Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Mol Biol Rep ; 50(5): 4145-4154, 2023 May.
Artigo em Inglês | MEDLINE | ID: mdl-36877349

RESUMO

BACKGROUND: The green sea turtle, Chelonia mydas, is a migratory species with a strong natal homing behavior leading to a complex population structure worldwide. The species has suffered severe declines in local populations; it is therefore crucial to understand its population dynamics and genetic structure to adopt appropriate management policies. Here, we describe the development of 25 new microsatellite markers specific to C. mydas and suitable for these analyses. METHODS AND RESULTS: They were tested on 107 specimens from French Polynesia. An average allelic diversity of 8 alleles per locus was reported and observed heterozygosity ranged from 0.187 to 0.860. Ten loci were significantly deviant from the Hardy-Weinberg equilibrium, and 16 loci showed a moderate to high level of linkage disequilibrium (4-22%). The overall Fis was positive (0.034, p-value < 0.001), and sibship analysis revealed 12 half- or full-sibling dyads, suggesting possible inbreeding in this population. Cross-amplification tests were performed on two other marine turtle species, Caretta caretta and Eretmochelys imbricata. All loci successfully amplified on these two species, though 1 to 5 loci were monomorphic. CONCLUSION: These new markers will not only be relevant for further analyses on the population structure of the green turtle and the two other species, but they will also be invaluable for parentage studies, for which a high number of polymorphic loci are necessary. This can provide important insight into male reproductive behavior and migration, an aspect of sea turtle biology that is of critical importance for the conservation of the species.


Assuntos
Tartarugas , Animais , Masculino , Tartarugas/genética , Heterozigoto , Repetições de Microssatélites/genética , Polinésia
2.
J Fish Biol ; 2022 Mar 06.
Artigo em Inglês | MEDLINE | ID: mdl-35249223

RESUMO

Patterns of mother-embryo fractionation of 13 C and 15 N were assessed for their predictability across three species of batoids caught as by-catch in south-eastern Australia. Stable isotope analysis of 24 mothers and their litters revealed that isotope ratios of embryos were significantly different from their corresponding mothers and that the scale and direction of the difference varied within and across species. The range of variation across species was 3.5‰ for δ13 C and 4‰ for δ15 N, equivalent to a difference in trophic level. In one species (Urolophus paucimaculatus) litters could be significantly enriched or depleted in 13 C and 15 N relative to their mothers' isotope signatures. These results suggest that patterns of mother-embryo isotope fractionation vary within and between species and that these patterns may not be explained only by developmental mode. Contrasting patterns of fractionation between and within species make it difficult to adjust mother-embryo fractionation with broad-scale correction factors.

3.
PLoS One ; 19(6): e0305608, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38885253

RESUMO

The blue shark, Prionace glauca, is the most abundant pelagic shark in the open ocean but its vulnerability remains poorly understood while being one of the most fecund sharks. In the Mediterranean Sea, the blue shark is listed as Critically Endangered (CR) by the International Union for Conservation of Nature. The species is facing a strong decline due to fishing, and scientific data regarding its genetic structure and vulnerability are still lacking. Here, we investigated the genetic diversity, demographic history, and population structure of the blue shark within the Mediterranean Sea, from samples of the Gulf of Lion and Malta, using sequences of the mtDNA control region and 22 microsatellite markers. We also compared our mitochondrial data to previous studies to examine the Atlantic-Mediterranean population structure. We assessed the blue shark's genetic vulnerability in the Mediterranean basin by modelling its effective population size. Our results showed a genetic differentiation between the Atlantic and the Mediterranean basins, with limited gene flow between the two areas, and distinct demographic histories making the Mediterranean population an independent management unit. Within the Mediterranean Sea, no sign of population structure was detected, suggesting a single population across the Western and Central parts of the sea. The estimated effective population size was low and highlighted the high vulnerability of the Mediterranean blue shark population, as the estimated size we calculated might not be sufficient to ensure the long-term persistence of the population. Our data also provide additional evidence that the Gulf of Lion area acts as a nursery for P. glauca, where protection is essential for the conservation strategy of the species in the Mediterranean.


Assuntos
DNA Mitocondrial , Espécies em Perigo de Extinção , Variação Genética , Densidade Demográfica , Tubarões , Animais , Tubarões/genética , Mar Mediterrâneo , DNA Mitocondrial/genética , Repetições de Microssatélites/genética , Genética Populacional , Conservação dos Recursos Naturais/métodos
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa