Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Sensors (Basel) ; 24(8)2024 Apr 18.
Artigo em Inglês | MEDLINE | ID: mdl-38676219

RESUMO

The article describes a hard- and software controlled complex for gas-strain monitoring, consisting of stationary laser strainmeters and a laser nanobarograph, a stationary gas analyzer, and a weather station installed at Shultz Cape in the Sea of Japan; and a mobile shipboard complex, consisting of a gas analyzer and a weather station installed in a scientific research vessel. In the course of trial methodological measurements on these systems, general patterns were identified in the dynamics of greenhouse gases and deformation of the Earth's crust in the range of diurnal and semi-diurnal tides, and also in the range of ultra-low frequencies, caused by atmospheric wave processes and, possibly, individual tones of the Earth's eigen oscillations.

2.
Sensors (Basel) ; 23(15)2023 Aug 03.
Artigo em Inglês | MEDLINE | ID: mdl-37571698

RESUMO

The paper describes experimental research and the results of these studies carried out in various bays of the Primorsky Territory of Russia using a supersensitive detector of hydrosphere pressure variations and a sound velocity profiler with pressure and temperature sensors. In all experiments, instruments, rigidly fixed to each other, were placed on the bottom at a depth of up to 10 m. Comparison of in-situ data from these instruments allowed us to experimentally calculate the coefficient of data conversion of the supersensitive detector of hydrosphere pressure variations when registering sea waves with periods ranging from several seconds to tens of minutes.

3.
Sensors (Basel) ; 22(7)2022 Mar 25.
Artigo em Inglês | MEDLINE | ID: mdl-35408140

RESUMO

This paper describes an ocean-bottom laser seismograph, based on the modified laser meter of hydrosphere pressure variations, and designed to record vertical bottom displacements at the place of its location. Its measuring accuracy is about 1 nm, limited by the stability of the laser emission, which can be improved by using more advanced lasers. The purpose of this instrument is to measure the displacements of the seabed's upper layer in the low-frequency sonic and infrasonic ranges. Theoretically, it can operate in the frequency range from 0 (conditionally) to 1000 Hz; the upper limit is determined by the operating speed of the digital registration system. We demonstrated the capabilities of the ocean-bottom laser seismograph while registering vertical bottom displacements caused by sea wind waves and lower frequency processes-seiches, i.e., eigenoscillations of the bay in which the instrument was installed. Comparison of experimental data of the bottom laser seismograph with the data of the laser hydrosphere pressure variations meter and the velocimeter-installed in close proximity-shows good efficiency of the instrument.

4.
Sensors (Basel) ; 20(23)2020 Dec 07.
Artigo em Inglês | MEDLINE | ID: mdl-33297462

RESUMO

This paper presents an instrument based on an equal-arm Michelson interferometer and a frequency-stabilized helium-neon laser. It is designed to record hydrosphere pressure variations in the frequency range from 0 (conventionally) to 1000 Hz, with accuracy of 0.24 mPa at sea depths of up to 50 m. The operating range of the instrument can be increased by order of magnitude by improving the registration system speed, and accuracy can be enhanced by using larger diameter membranes and/or their smaller thickness. The paper demonstrates some experimental results obtained on the supersensitive detector of hydrosphere pressure variations, confirming its high performance in the infrasonic and sonic ranges.

5.
J Acoust Soc Am ; 142(4): 1990, 2017 10.
Artigo em Inglês | MEDLINE | ID: mdl-29092617

RESUMO

The paper analyzes the experimental data obtained in a comprehensive experiment aimed at identifying the regularities of transmitted hydroacoustic signal transformations at the shelf of decreasing depth. The 33 Hz harmonic hydroacoustic signals were generated at the shelf of the Sea of Japan by a low-frequency source. Distribution of the transmitted energy at vertical sounding from the surface to the bottom was studied at different shelf points with Bruel & Kjaer 8104 hydrophone. At the shore, the transformed seismo-acoustic signals were received by a 52.5 m shore laser strainmeter. The experiments showed that about 22% of the transmitted energy was transformed into the energy of hydroacoustic waves propagating in the water. About 72% of hydroacoustic wave energy, in turn, was transformed into the energy of R-waves, which were registered by the shore laser strainmeter. Other regularities of hydroacoustic signals distribution with 33 Hz frequency over the V-shaped shelf are identified.

6.
J Phys Chem A ; 114(46): 12305-17, 2010 Nov 25.
Artigo em Inglês | MEDLINE | ID: mdl-21038927

RESUMO

We report high-level ab initio calculations and single-photon ionization mass spectrometry study of ionization of adenine (A), thymine (T), cytosine (C), and guanine (G). For thymine and adenine, only the lowest-energy tautomers were considered, whereas for cytosine and guanine we characterized the five lowest-energy tautomeric forms. The first adiabatic and several vertical ionization energies were computed using the equation-of-motion coupled-cluster method for ionization potentials with single and double substitutions. Equilibrium structures of the cationic ground states were characterized by DFT with the ωB97X-D functional. The ionization-induced geometry changes of the bases are consistent with the shapes of the corresponding molecular orbitals. For the lowest-energy tautomers, the magnitude of the structural relaxation decreases in the following series, G > C > A > T, the respective relaxation energies being 0.41, 0.32, 0.25, and 0.20 eV. The computed adiabatic ionization energies (8.13, 8.89, 8.51-8.67, and 7.75-7.87 eV for A, T, C, and G, respectively) agree well with the onsets of the photoionization efficiency (PIE) curves (8.20 ± 0.05, 8.95 ± 0.05, 8.60 ± 0.05, and 7.75 ± 0.05 eV). Vibrational progressions for the S(0)-D(0) vibronic bands computed within double-harmonic approximation with Duschinsky rotations are compared with previously reported experimental photoelectron spectra and differentiated PIE curves.


Assuntos
Adenina/química , Citosina/química , Elétrons , Guanina/química , Ácidos Nucleicos/química , Timina/química , Biologia Computacional , Espectrometria de Massas , Modelos Químicos , Fotoquímica
7.
J Chem Phys ; 132(1): 014109, 2010 Jan 07.
Artigo em Inglês | MEDLINE | ID: mdl-20078151

RESUMO

The frozen natural orbital (FNO) approach, which has been successfully used in ground-state coupled-cluster calculations, is extended to open-shell ionized electronic states within equation-of-motion coupled-cluster (EOM-IP-CC) formalism. FNOs enable truncation of the virtual orbital space significantly reducing the computational cost with a negligible decline in accuracy. Implementation of the MP2-based FNO truncation scheme within EOM-IP-CC is presented and benchmarked using ionized states of beryllium, dihydrogen dimer, water, water dimer, nitrogen, and uracil dimer. The results show that the natural occupation threshold, i.e., percentage of the total natural occupation recovered in the truncated virtual orbital space, provides a more robust truncation criterion as compared to the fixed percentage of virtual orbitals retained. Employing 99%-99.5% natural occupation threshold, which results in the virtual space reduction by 70%-30%, yields errors below 1 kcal/mol. Moreover, the total energies exhibit linear dependence as a function of the percentage of the natural occupation retained allowing for extrapolation to the full virtual space values. The capabilities of the new method are demonstrated by the calculation of the 12 lowest vertical ionization energies (IEs) and the lowest adiabatic IE of guanine. In addition to IE calculations, we present the scans of potential energy surfaces (PESs) for ionized (H(2)O)(2) and (H(2))(2). The scans demonstrate that the FNO truncation does not introduce significant nonparallelity errors and accurately describes the PESs shapes and the corresponding energy differences, e.g., dissociation energies.

SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa