RESUMO
In the wake of the COVID-19 pandemic caused by SARS-CoV-2, questions emerged about the potential effects of Bacillus Calmette-Guérin (BCG) vaccine on the immune response to SARS-CoV-2 infection, including the neurodegenerative diseases it may contribute to. To explore this, an experimental study was carried out in BCG-stimulated and non-stimulated k18-hACE2 mice challenged with SARS-CoV-2. Viral loads in tissues determined by RT-qPCR, histopathology in brain and lungs, immunohistochemical study in brain (IHC) as well as mortality rates, clinical signs and plasma inflammatory and coagulation biomarkers were assessed. Our results showed BCG-SARS-CoV-2 challenged mice presented higher viral loads in the brain and an increased frequency of neuroinvasion, with the greatest differences observed between groups at 3-4 days post-infection (dpi). Histopathological examination showed a higher severity of brain lesions in BCG-SARS-CoV-2 challenged mice, mainly consisting of neuroinflammation, increased glial cell population and neuronal degeneration, from 5 dpi onwards. This group also presented higher interstitial pneumonia and vascular thrombosis in lungs (3-4 dpi), BCG-SARS-CoV-2 mice showed higher values for TNF-α and D-dimer values, while iNOS values were higher in SARS-CoV-2 mice at 3-4 dpi. Results presented in this study indicate that BCG stimulation could have intensified the inflammatory and neurodegenerative lesions promoting virus neuroinvasion and dissemination in this experimental model. Although k18-hACE2 mice show higher hACE2 expression and neurodissemination, this study suggests that, although the benefits of BCG on enhancing heterologous protection against pathogens and tumour cells have been broadly demonstrated, potential adverse outcomes due to the non-specific effects of BCG should be considered.
Assuntos
Vacina BCG , Encéfalo , COVID-19 , SARS-CoV-2 , Animais , Camundongos , Vacina BCG/administração & dosagem , COVID-19/imunologia , COVID-19/virologia , SARS-CoV-2/fisiologia , Encéfalo/patologia , Encéfalo/virologia , Carga Viral , Pulmão/patologia , Pulmão/virologia , Pulmão/imunologia , Enzima de Conversão de Angiotensina 2/metabolismo , Camundongos Transgênicos , FemininoRESUMO
Neurobrucellosis is a shared condition of cetaceans and humans. However, the pathogenesis and immune response in cetacean neurobrucellosis has not been extensively studied. In this multicentric investigation, 21 striped dolphin (Stenella coeruleoalba) neurobrucellosis (Brucella ceti) cases diagnosed over a 10-year period (2012-2022) were retrospectively evaluated. For each case, morphological changes were assessed by evaluating 21 histological parameters. Furthermore, the immunohistochemical expression of Brucella antigen, glial fibrillary acid protein (GFAP), and a selection of inflammatory cell (IBA-1, CD3, and CD20) and cytokine (tumor necrosis factor-alpha [TNF-α], interferon-gamma [IFN-γ], interleukin [IL]-1ß, IL-2, and IL-6) markers were investigated. Inflammation of the leptomeninges, ependyma, and/or choroid plexus was lymphohistiocytic, containing macrophages/microglia (IBA-1+), T-cells (CD3+), and B-cells (CD20+) in equal proportion. B-cells occasionally formed tertiary follicles. GFAP expression showed astrocytosis in most cases. Expression of TNF-α, IFN-γ, and IL-2 indicated an intense proinflammatory response, stimulating both macrophages and T-cells. Our results showed that the inflammation and neuroinflammation in neurobrucellosis of striped dolphins mimic human neurobrucellosis and in vitro and in vivo studies in laboratory animals. Cetacean disease surveillance can be exploited to expand the knowledge of the pathogenesis and immunology of infectious diseases, particularly brucellosis, under a One Health approach.
RESUMO
BACKGROUND: Escherichia coli is an opportunistic pathogen which colonizes various host species. However, to what extent genetic lineages of E. coli are adapted or restricted to specific hosts and the genomic determinants of such adaptation or restriction is poorly understood. RESULTS: We randomly sampled E. coli isolates from four countries (Germany, UK, Spain, and Vietnam), obtained from five host species (human, pig, cattle, chicken, and wild boar) over 16 years, from both healthy and diseased hosts, to construct a collection of 1198 whole-genome sequenced E. coli isolates. We identified associations between specific E. coli lineages and the host from which they were isolated. A genome-wide association study (GWAS) identified several E. coli genes that were associated with human, cattle, or chicken hosts, whereas no genes associated with the pig host could be found. In silico characterization of nine contiguous genes (collectively designated as nan-9) associated with the human host indicated that these genes are involved in the metabolism of sialic acids (Sia). In contrast, the previously described sialic acid regulon known as sialoregulon (i.e. nanRATEK-yhcH, nanXY, and nanCMS) was not associated with any host species. In vitro growth experiments with a Δnan-9 E. coli mutant strain, using the sialic acids 5-N-acetylneuraminic acid (Neu5Ac) and N-glycolylneuraminic acid (Neu5Gc) as sole carbon source, showed impaired growth behaviour compared to the wild-type. CONCLUSIONS: This study provides an extensive analysis of genetic determinants which may contribute to host specificity in E. coli. Our findings should inform risk analysis and epidemiological monitoring of (antimicrobial resistant) E. coli.
Assuntos
Infecções por Escherichia coli , Escherichia coli , Animais , Bovinos , Humanos , Suínos , Escherichia coli/genética , Estudo de Associação Genômica Ampla , Infecções por Escherichia coli/veterinária , Genômica , Ácidos Siálicos/metabolismoRESUMO
SARS-CoV-2 can infect domestic animals such as cats and dogs. The zoonotic origin of the disease requires surveillance on animals. Seroprevalence studies are useful tools for detecting previous exposure because the short period of virus shedding in animals makes detection of the virus difficult. We report on an extensive serosurvey on pets in Spain that covered 23 months. We included animals with exposure to SARS-CoV-2-infected persons, random animals, and stray animals in the study. We also evaluated epidemiologic variables such as human accumulated incidence and spatial location. We detected neutralizing antibodies in 3.59% of animals and showed a correlation between COVID-19 incidence in humans and positivity to antibody detection in pets. This study shows that more pets were infected with SARS-CoV-2 than in previous reports based on molecular research, and the findings highlight the need to establish preventive measures to avoid reverse zoonosis events.
Assuntos
COVID-19 , SARS-CoV-2 , Animais , Humanos , Cães , Gatos , COVID-19/epidemiologia , COVID-19/veterinária , Espanha/epidemiologia , Estudos Soroepidemiológicos , Zoonoses/epidemiologia , Animais de EstimaçãoRESUMO
The use of colistin as a last resort antimicrobial is compromised by the emergence of resistant enterobacteria with acquired determinants like mcr genes, mutations that activate the PmrAB system and by still unknown mechanisms. This work analyzed 74 E. coli isolates from healthy swine, turkey or bovine, characterizing their colistin resistance determinants. The mcr-1 gene, detected in 69 isolates, was the main determinant found among which 45% were carried by highly mobile plasmids, followed by four strains lacking previously known resistance determinants or two with mcr-4 (one in addition to mcr-1), whose phenotypes were not transferred by conjugation. Although a fraction of isolates carrying mcr-1 or mcr-4 genes also presented missense polymorphisms in pmrA or pmrB, constitutive activation of PmrAB was not detected, in contrast to strains with mutations that confer colistin resistance. The expression of mcr genes negatively controls the transcription of the arnBCADTEF operon itself, a down-regulation that was also observed in the four isolates lacking known resistance determinants, three of them sharing the same macrorestriction and plasmid profiles. Genomic sequencing of one of these strains, isolated from a bovine in 2015, revealed a IncFII plasmid of 62.1 Kb encoding an extra copy of the arnBCADTEF operon closely related to Kluyvera ascorbata homologs. This element, called pArnT1, was cured by ethidium bromide and the cells lost resistance to colistin in parallel. Furthermore, a susceptible E. coli strain acquired heteroresistance after transformation with pArnT1 or pBAD24 carrying the Kluyvera-like arnBCADTEF operon, revealing it as a new colistin resistance determinant.
RESUMO
Flavobacterium psychrophilum affects many cultured fish species and is considered one of the most important bacterial pathogens causing substantial economic losses in salmonid aquaculture worldwide. Here, F. psychrophilum was identified by matrix-assisted laser desorption ionization time-of-flight mass spectrometry (MALDI-TOF MS) and nested PCR as the aetiological agent causing mortality in diseased juvenile Siberian sturgeons (Acipenser baerii) reared on a freshwater fish farm. Diseased sturgeons were lethargic and displayed dark skin pigmentation, increased mucus production and the presence of skin ulcerations and haemorrhages specially on the ventral side and the base of fins. The histological examination of fish revealed proliferative branchitis, ulcerative and necrotizing dermatitis and myositis, lymphoid tissue atrophy, liver and kidney degeneration and thrombosis. To the best of our knowledge, this is the first report describing the infection of Siberian sturgeons by F. psychrophilum. The detection of F. psychrophilum in diseased Siberian sturgeons and the description of the pathological findings observed during the outbreak may contribute to a better understanding of the bacterium pathogenicity and the range of fish species susceptible to infection.
Assuntos
Doenças dos Peixes , Infecções por Flavobacteriaceae , Oncorhynchus mykiss , Salmonidae , Animais , Infecções por Flavobacteriaceae/microbiologia , Doenças dos Peixes/microbiologia , Flavobacterium , Oncorhynchus mykiss/microbiologiaRESUMO
Trained immunity (TRAIM) may be defined as a form of memory where innate immune cells such as monocytes, macrophages, dendritic and natural killer (NK) cells undergo an epigenetic reprogramming that enhances their primary defensive capabilities. Cross-pathogen protective TRAIM can be triggered in different hosts by exposure to live microbes or microbe-derived products such as heat-inactivated Mycobacterium bovis or with the glycan α-Gal to elicit protective responses against several pathogens. We review the TRAIM paradigm using two models representing distinct scales of immune sensitization: the whole bacterial cell and one of its building blocks, the polysaccharides or glycans. Observations point out to macrophage lytic capabilities and cytokine regulation as two key components in non-specific innate immune responses against infections. The study of the TRAIM response deserves attention to better characterize the evolution of host-pathogen cooperation both for identifying the aetiology of some diseases and for finding new therapeutic strategies. In this field, the zebrafish provides a convenient and complete biological system that could help to deepen in the knowledge of TRAIM-mediated mechanisms in pathogen-host interactions.
Assuntos
Infecções por Mycobacterium , Mycobacterium bovis , Animais , Citocinas , Modelos Animais de Doenças , Temperatura Alta , Imunidade Inata , Polissacarídeos , Peixe-ZebraRESUMO
Toxigenic Corynebacterium ulcerans is as an emerging zoonotic agent of diphtheria. We describe the zoonotic transmission of diphtheria caused by toxigenic C. ulcerans from domestic animals in Spain, confirmed by core-genome multilocus sequence typing. Alongside an increasing number of recent publications, our findings highlight the public health threat posed by diphtheria reemergence.
Assuntos
Infecções por Corynebacterium , Difteria , Animais , Animais Domésticos , Infecções por Corynebacterium/microbiologia , Difteria/diagnóstico , Difteria/epidemiologia , Toxina Diftérica , Espanha/epidemiologiaRESUMO
Trained immunity is the capacity of innate immune cells to produce an improved response against a secondary infection after a previous unrelated infection. Salmonellosis represents a public health issue and affects the pig farming industry. In general, vaccination against salmonellosis is still facing problems regarding the control of distinct serovars. Therefore, we hypothesized that an immunostimulant based on heat inactivated Mycobacterium bovis (HIMB) could have an immune training effect in pigs challenged with Salmonella enterica serovar Choleraesuis (S. Choleraesuis) and decided to explore the amplitude of this non-specific immune response. For this purpose, twenty-four 10 days-old female piglets were randomly separated in three groups: immunized group (n = 10) received orally two doses of HIMB prior to the intratracheal S. Choleraesuis-challenge, positive control group (n = 9) that was only challenged with S. Choleraesuis, and negative control group (n = 5) that was neither immunized nor infected. All individuals were necropsied 21 days post-challenge. HIMB improved weight gain and reduced respiratory symptoms and pulmonary lesions caused by S. Choleraesuis in pigs. Pigs immunized with HIMB showed higher cytokine production, especially of serum TNFα and lung CCL28, an important mediator of mucosal trained immunity. Moreover, immunized pigs showed lower levels of the biomarker of lipid oxidation malondialdehyde and higher activity of the antioxidant enzyme superoxide dismutase than untreated challenged pigs. However, the excretion and tissue colonization of S. Choleraesuis remained unaffected. This proof-of-concept study suggests beneficial clinical, pathological, and heterologous immunological effects against bacterial pathogens within the concept of trained immunity, opening avenues for further research.
Assuntos
Mycobacterium bovis , Salmonelose Animal , Salmonella enterica , Doenças dos Suínos , Animais , Feminino , Temperatura Alta , Salmonella , Salmonelose Animal/microbiologia , Suínos , Doenças dos Suínos/microbiologia , Doenças dos Suínos/prevenção & controleRESUMO
BACKGROUND: Swine are considered a major source of foodborne salmonellosis, a public health issue further complicated by the circulation of multidrug-resistant Salmonella strains that threaten the safety of the food chain. The current study aimed to identify patterns that can help to understand the epidemiology of antimicrobial resistance (AMR) in Salmonella in pigs in Spain through the application of several multivariate statistical methods to data from the AMR national surveillance programs from 2001 to 2017. RESULTS: A total of 1,318 pig Salmonella isolates belonging to 63 different serotypes were isolated and their AMR profiles were determined. Tetracycline resistance across provinces in Spain was the highest among all antimicrobials and ranged from 66.7% to 95.8%, followed by sulfamethoxazole resistance (range: 42.5% - 77.8%), streptomycin resistance (range: 45.7% - 76.7%), ampicillin resistance (range: 24.3% - 66.7%, with a lower percentage of resistance in the South-East of Spain), and chloramphenicol resistance (range: 8.5% - 41.1%). A significant increase in the percentage of resistant isolates to chloramphenicol, sulfamethoxazole, ampicillin and trimethoprim from 2013 to 2017 was observed. Bayesian network analysis showed the existence of dependencies between resistance to antimicrobials of the same but also different families, with chloramphenicol and sulfamethoxazole in the centre of the networks. In the networks, the conditional probability for an isolate susceptible to ciprofloxacin that was also susceptible to nalidixic acid was 0.999 but for an isolate resistant to ciprofloxacin that was also resistant to nalidixic acid was only 0.779. An isolate susceptible to florfenicol would be expected to be susceptible to chloramphenicol, whereas an isolate resistant to chloramphenicol had a conditional probability of being resistant to florfenicol at only 0.221. Hierarchical clustering further demonstrated the linkage between certain resistances (and serotypes). For example, a higher likelihood of multidrug-resistance in isolates belonging to 1,4,[5],12:i:- serotype was found, and in the cluster where all isolates were resistant to tetracycline, chloramphenicol and florfenicol, 86.9% (n = 53) of the isolates were Typhimurium. CONCLUSION: Our study demonstrated the power of multivariate statistical methods in discovering trends and patterns of AMR and found the existence of serotype-specific AMR patterns for serotypes of public health concern in Salmonella isolates in pigs in Spain.
Assuntos
Antibacterianos , Farmacorresistência Bacteriana Múltipla , Animais , Antibacterianos/farmacologia , Teorema de Bayes , Cloranfenicol , Ciprofloxacina , Farmacorresistência Bacteriana , Testes de Sensibilidade Microbiana/veterinária , Ácido Nalidíxico , Salmonella , Espanha/epidemiologia , Sulfametoxazol , SuínosRESUMO
The parasite T. foetus causes trichomonosis in cattle but is generally asymptomatic in males. Thus, many bulls carrying the disease go unnoticed, making the detection of T. foetus in bulls an important aspect for its control. Due to drawbacks posed by its cultivation, PCR is a preferred option for diagnostic laboratories. Most published PCR protocols target the genomic region compring the 18S, 5.8S, and 28S rRNA genes and internal transcribed spacers 1 and 2 (rRNA-ITS region), homologous to that of other Tritrichomonas species. There is minimal information on alternative genetic targets and no comparative studies have been published. We compared a protocol based on the microsatellite TfRE (called H94) and five protocols based on the rRNA-ITS region (called M06, M15, G02, G05, and N02). We also designed and evaluated a novel PCR-based assay on the EF1-alpha-Tf1 gene (called V21). The analytical sensitivity and specificity assays for the PCR protocols were performed according to the World Organisation for Animal Health (OIE) directives and the comparative study was performed with a widely used PCR (M06) on clinical samples from 466 breeding bulls. V21 showed a high degree of agreement with our reference M06 (kappa = 0.967), as well as M15 (kappa = 0.958), G05 (kappa = 0.948), and H94 (kappa = 0.986). Protocols H94 and V21 appear to be good approaches for confirming clinical cases in preputial bull samples when genomic regions alternative to rRNA-ITS are required. By contrast, N02 gave false negatives and G02 false positives.
Assuntos
Doenças dos Bovinos , Infecções Protozoárias em Animais , Tritrichomonas foetus , Animais , Bovinos , Doenças dos Bovinos/diagnóstico , Doenças dos Bovinos/parasitologia , Masculino , Fator 1 de Elongação de Peptídeos/genética , Infecções Protozoárias em Animais/diagnóstico , Infecções Protozoárias em Animais/parasitologia , Reação em Cadeia da Polimerase em Tempo Real/métodos , Tritrichomonas foetus/genéticaRESUMO
We found severe acute respiratory syndrome coronavirus 2 RNA in 6 (8.4%) of 71 ferrets in central Spain and isolated and sequenced virus from 1 oral and 1 rectal swab specimen. Natural infection occurs in kept ferrets when virus circulation among humans is high. However, small ferret collections probably cannot maintain virus circulation.
Assuntos
COVID-19 , Furões , Animais , Humanos , SARS-CoV-2 , Espanha/epidemiologiaRESUMO
The use of antimicrobials in human and veterinary medicine has coincided with a rise in antimicrobial resistance (AMR) in the food-borne pathogens Campylobacter jejuni and Campylobacter coli. Faecal contamination from the main reservoir hosts (livestock, especially poultry) is the principal route of human infection but little is known about the spread of AMR among source and sink populations. In particular, questions remain about how Campylobacter resistomes interact between species and hosts, and the potential role of sewage as a conduit for the spread of AMR. Here, we investigate the genomic variation associated with AMR in 168 C. jejuni and 92 C. coli strains isolated from humans, livestock and urban effluents in Spain. AMR was tested in vitro and isolate genomes were sequenced and screened for putative AMR genes and alleles. Genes associated with resistance to multiple drug classes were observed in both species and were commonly present in multidrug-resistant genomic islands (GIs), often located on plasmids or mobile elements. In many cases, these loci had alleles that were shared among C. jejuni and C. coli consistent with horizontal transfer. Our results suggest that specific antibiotic resistance genes have spread among Campylobacter isolated from humans, animals and the environment.
Assuntos
Campylobacter coli/genética , Campylobacter jejuni/genética , Farmacorresistência Bacteriana Múltipla/genética , Pool Gênico , Transferência Genética Horizontal , Gado/microbiologia , Esgotos/microbiologia , Animais , Antibacterianos/farmacologia , Infecções por Campylobacter/microbiologia , Campylobacter coli/efeitos dos fármacos , Humanos , Testes de Sensibilidade Microbiana , Aves Domésticas/microbiologia , EspanhaRESUMO
Effective vaccines against tuberculosis (TB) are needed in order to prevent TB transmission in human and animal populations. Evaluation of TB vaccines may be facilitated by using reliable animal models that mimic host pathophysiology and natural transmission of the disease as closely as possible. In this study, we evaluated the immunogenicity and efficacy of two attenuated vaccines, BCG and MTBVAC, after each was given to 17 goats (2 months old) and then exposed for 9 months to goats infected with M. caprae. In general, MTBVAC-vaccinated goats showed higher interferon-gamma release than BCG vaccinated goats in response to bovine protein purified derivative and ESAT-6/CFP-10 antigens and the response was significantly higher than that observed in the control group until challenge. All animals showed lesions consistent with TB at the end of the study. Goats that received either vaccine showed significantly lower scores for pulmonary lymph nodes and total lesions than unvaccinated controls. Both MTBVAC and BCG vaccines proved to be immunogenic and effective in reducing severity of TB pathology caused by M. caprae. Our model system of natural TB transmission may be useful for evaluating and optimizing vaccines.
Assuntos
Vacina BCG/imunologia , Doenças das Cabras/imunologia , Imunogenicidade da Vacina/imunologia , Mycoplasma/fisiologia , Vacinas contra a Tuberculose/imunologia , Tuberculose/veterinária , Animais , Doenças das Cabras/transmissão , Cabras , Imunidade Celular/efeitos dos fármacos , Imunidade Celular/imunologia , Imunidade Humoral/efeitos dos fármacos , Imunidade Humoral/imunologia , Tuberculose/imunologia , Tuberculose/transmissão , Vacinas Atenuadas/imunologiaRESUMO
Pasteurella multocida is responsible for economically important diseases in sheep and pigs. Antimicrobial susceptibility studies are essential for initiating rational and effective empirical therapy of P. multocida infections. In this study we investigated the antimicrobial susceptibility to 18 antimicrobial agents of 156 clinical isolates of P. multocida from sheep (n = 87) and pigs (n = 69) using the microdilution method. Both sheep and pig isolates exhibited low levels of resistance (≤ 15%) to ceftiofur, gentamicin, neomycin, spectinomycin, chlortetracycline, tulathromycin, florfenicol, danofloxacin, and enrofloxacin and trimethoprim/sulphamethoxazole, high resistance rates (> 15% up to 50%) to oxytetracycline, tilmicosin, and tiamulin, and very high resistance rates (> 50%) to tylosin tartrate, clindamycin, and sulphadimethoxine. However, sheep isolates exhibited significantly lower percentages of resistance and lower MIC90 values (P < 0.05) than pig isolates for most of the antimicrobials tested. In addition, sheep isolates exhibited also significantly lower phenotypic antimicrobial resistance diversity (8 resistotypes vs. 30 resistotypes). LAC-LIN-SUL-MAC was the resistotype most frequently detected in sheep (39.1%) and LIN-SUL-MAC in pig isolates (26.1%). The differences in susceptibility patterns could be influenced by the lower use of antimicrobials in the small ruminant industry compared with the pig farming industry.
Assuntos
Antibacterianos/farmacologia , Pasteurella multocida/efeitos dos fármacos , Carneiro Doméstico/microbiologia , Sus scrofa/microbiologia , Animais , Testes de Sensibilidade Microbiana/veterinária , Pasteurella multocida/genética , EspanhaRESUMO
Animal tuberculosis (TB) remains a major problem in some countries despite the existence of control programmes focused mainly on cattle. In this species, aerogenous transmission is accepted as the most frequent infection route, affecting mainly the respiratory system. Under the hypothesis that the oral route could be playing a more relevant role in transmission, diagnosis and disease persistence than previously thought, this study was performed to assess the course of TB infection in cattle and its effects on diagnosis depending on the route of entry of Mycobacterium bovis. Two groups of five calves each were either endotracheally (EC) or orally (OC) challenged. Necropsies were carried out 12 weeks after challenge except for three OC calves slaughtered 8 weeks later. All animals reacted to the tuberculin skin test and the entire EC group was positive to the interferon-gamma release assay (IGRA) 2 weeks after challenge and thereafter. The first positive IGRA results for OC calves (3/5) were recorded 4 weeks after challenge. Group comparison revealed significant differences in lesion and positive culture location and scoring. TB-compatible gross lesions and positive cultures were more frequently found in the thorax (p < 0.001) and lung (p < 0.05) of EC animals, whereas OC animals presented lesions (p = 0.23) and positive cultures (p < 0.05) mainly located in the abdomen. These results indicate that the infection route seems to be a determining factor for both the distribution and the time needed for the development of visible lesions. Our study suggests that confirmation of TB infection in some skin reactor animals can be problematic if current post-mortem examination and diagnostics are not improved.
Assuntos
Mycobacterium bovis/fisiologia , Tuberculose Bovina/diagnóstico , Tuberculose Bovina/patologia , Animais , Bovinos , Testes de Liberação de Interferon-gama/veterinária , Teste Tuberculínico/veterináriaRESUMO
BACKGROUND: Despite the epidemiological evidence about the relationship between diabetes, mortality and cardiovascular disease, information about the population impact of uncontrolled diabetes is scarce. We aimed to estimate the attributable risk associated with HbA1c levels for all-cause mortality and cardiovascular hospitalization. METHODS: Prospective study of subjects with diabetes mellitus using electronic health records from the universal public health system in the Valencian Community, Spain 2008-2012. We included 19,140 men and women aged 30 years or older with diabetes who underwent routine health examinations in primary care. RESULTS: A total of 11,003 (57%) patients had uncontrolled diabetes defined as HbA1c ≥6.5%, and, among those, 5325 participants had HbA1c ≥7.5%. During an average follow-up time of 3.3 years, 499 deaths, 912 hospitalizations for coronary heart disease (CHD) and 786 hospitalizations for stroke were recorded. We observed a linear and increasingly positive dose-response of HbA1c levels and CHD hospitalization. The relative risk for all-cause mortality and CHD and stroke hospitalization comparing patients with and without uncontrolled diabetes was 1.29 (95 CI 1.08,1.55), 1.38 (95 CI 1.20,1.59) and 1.05 (95 CI 0.91, 1.21), respectively. The population attributable risk (PAR) associated with uncontrolled diabetes was 13.6% (95% CI; 4.0-23.9) for all-cause mortality, 17.9% (95% CI; 10.5-25.2) for CHD and 2.7% (95% CI; - 5.5-10.8) for stroke hospitalization. CONCLUSIONS: In a large general-practice cohort of patients with diabetes, uncontrolled glucose levels were associated with a substantial mortality and cardiovascular disease burden.
Assuntos
Doenças Cardiovasculares/mortalidade , Diabetes Mellitus/mortalidade , Adulto , Idoso , Biomarcadores/sangue , Doenças Cardiovasculares/diagnóstico , Doenças Cardiovasculares/terapia , Causas de Morte , Diabetes Mellitus/sangue , Diabetes Mellitus/diagnóstico , Diabetes Mellitus/tratamento farmacológico , Registros Eletrônicos de Saúde , Feminino , Hemoglobinas Glicadas/metabolismo , Humanos , Hipoglicemiantes/uso terapêutico , Masculino , Pessoa de Meia-Idade , Admissão do Paciente , Atenção Primária à Saúde , Prognóstico , Estudos Prospectivos , Sistema de Registros , Medição de Risco , Fatores de Risco , Espanha/epidemiologia , Fatores de TempoRESUMO
Streptococcus pyogenes appears to be almost exclusively restricted to humans, with few reports on isolation from animals. We provide a detailed characterization (emm typing, pulsed-field gel electrophoresis [PFGE], and multilocus sequence typing [MLST]) of 15 S. pyogenes isolates from animals associated with different clinical backgrounds. We also investigated erythromycin resistance mechanisms and phenotypes and virulence genes. We observed 2 emm types: emm12 (11 isolates) and emm77 (4 isolates). Similarly, we observed 2 genetic linages, sequence type (ST) 26 and ST63. Most isolates exhibited the M macrolide resistance phenotype and the mefA/ermB genotype. Isolates were grouped into 2 clones on the basis of emm-MLST-PFGE-virulence gene profile combinations: clone 1, characterized by the combined genotype emm12-ST36-pulsotype A-speG; and clone 2, characterized by the genotype emm77-ST63-pulsotype B-speC. Our results do not show conclusively that animals may represent a new reservoir of S. pyogenes but indicate the ability of human-derived S. pyogenes isolates to colonize and infect animals.
Assuntos
Farmacorresistência Bacteriana/genética , Genótipo , Doenças dos Ovinos/epidemiologia , Infecções Estreptocócicas/epidemiologia , Infecções Estreptocócicas/veterinária , Streptococcus pyogenes/genética , Animais , Antibacterianos/farmacologia , Antígenos de Bactérias/genética , Antígenos de Bactérias/metabolismo , Proteínas da Membrana Bacteriana Externa/genética , Proteínas da Membrana Bacteriana Externa/metabolismo , Proteínas de Bactérias/genética , Proteínas de Bactérias/metabolismo , Proteínas de Transporte/genética , Proteínas de Transporte/metabolismo , Células Clonais , Eletroforese em Gel de Campo Pulsado , Fazendas , Expressão Gênica , Macrolídeos/farmacologia , Proteínas de Membrana/genética , Proteínas de Membrana/metabolismo , Testes de Sensibilidade Microbiana , Tipagem de Sequências Multilocus , Fenótipo , Coelhos , Ovinos/microbiologia , Doenças dos Ovinos/tratamento farmacológico , Doenças dos Ovinos/microbiologia , Doenças dos Ovinos/transmissão , Espanha , Infecções Estreptocócicas/tratamento farmacológico , Infecções Estreptocócicas/transmissão , Streptococcus pyogenes/classificação , Streptococcus pyogenes/efeitos dos fármacos , Streptococcus pyogenes/isolamento & purificaçãoRESUMO
BACKGROUND: Bovine purified protein derivative (bPPD) and avian purified protein derivative (aPPD) are widely used for bovine tuberculosis diagnosis. However, little is known about their qualitative and quantitative characteristics, which makes their standardisation difficult. In addition, bPPD can give false-positive tuberculosis results because of sequence homology between Mycobacterium bovis (M. bovis) and M. avium proteins. Thus, the objective of this study was to carry out a proteomic characterisation of bPPD, aPPD and an immunopurified subcomplex from bPPD called P22 in order to identify proteins contributing to cross-reactivity among these three products in tuberculosis diagnosis. METHODS: Trypsin digests of bPPD, aPPD and P22 were analysed by nanoscale liquid chromatography-electrospray ionization tandem mass spectrometry. Mice were immunised with bPPD or aPPD, and their serum was tested by indirect ELISA for reactivity against these preparations as well as against P22. RESULTS: A total of 456 proteins were identified in bPPD, 1019 in aPPD and 118 in P22; 146 of these proteins were shared by bPPD and aPPD, and 43 were present in all three preparations. Candidate proteins that may cause cross-reactivity between bPPD and aPPD were identified based on protein abundance and antigenic propensity. Serum reactivity experiments indicated that P22 may provide greater specificity than bPPD with similar sensitivity for ELISA-type detection of antibodies against M. tuberculosis complex. CONCLUSION: The subpreparation from bPPD called P22 may be an alternative to bPPD for serodiagnosis of bovine tuberculosis, since it shares fewer proteins with aPPD than bPPD does, reducing risk of cross-reactivity with anti-M. avium antibodies.
RESUMO
Biochemical and molecular genetic studies were performed on two novel Gram-stain-positive, catalase-negative, coccus-shaped organisms isolated from liquid joint samples of two pigs. The micro-organisms were not identified as members of a recognized species based on results of cellular, morphological and biochemical tests. 16S rRNA gene sequence comparison studies allowed their identification as members of the genus Jeotgalibaca, but the organisms were different to Jeotgalibaca dankookensis, the single species of the genus. The two micro-organisms shared 96.3 and 96.9â% 16S rRNA gene sequence similarity values with their nearest phylogenetic relative, J. dankookensis. The novel bacterial isolates were distinguished from J. dankookensis using biochemical tests. Based on both phenotypic and phylogenetic findings, it is proposed that the unknown bacteria be classified as representatives of two novel species of the genus Jeotgalibaca, Jeotgalibaca porci sp. nov. and Jeotgalibaca arthritidis sp. nov. The type strain of Jeotgalibaca porcisp. nov. is 1804-02T (=CECT 9156T=CCUG 69148T) and that of Jeotgalibaca arthritidissp. nov. is 1805-02T (=CECT 9157T=CCUG 69147T).