Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 53
Filtrar
1.
Glob Chang Biol ; 28(17): 5062-5085, 2022 09.
Artigo em Inglês | MEDLINE | ID: mdl-35642454

RESUMO

Although it is an integral part of global change, most of the research addressing the effects of climate change on forests have overlooked the role of environmental pollution. Similarly, most studies investigating the effects of air pollutants on forests have generally neglected the impacts of climate change. We review the current knowledge on combined air pollution and climate change effects on global forest ecosystems and identify several key research priorities as a roadmap for the future. Specifically, we recommend (1) the establishment of much denser array of monitoring sites, particularly in the South Hemisphere; (2) further integration of ground and satellite monitoring; (3) generation of flux-based standards and critical levels taking into account the sensitivity of dominant forest tree species; (4) long-term monitoring of N, S, P cycles and base cations deposition together at global scale; (5) intensification of experimental studies, addressing the combined effects of different abiotic factors on forests by assuring a better representation of taxonomic and functional diversity across the ~73,000 tree species on Earth; (6) more experimental focus on phenomics and genomics; (7) improved knowledge on key processes regulating the dynamics of radionuclides in forest systems; and (8) development of models integrating air pollution and climate change data from long-term monitoring programs.


Assuntos
Poluição do Ar , Mudança Climática , Poluição do Ar/efeitos adversos , Ecossistema , Florestas , Árvores
2.
J Environ Sci Health B ; 57(1): 71-80, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35114885

RESUMO

Biodiversity in the Brazilian Cerrado biome has been declining sharply with the continued expansion of agriculture and the excessive use of herbicides. Thus, the aim of this study was to evaluate the morphophysiological and biochemical responses in Dipteryx alata plants to various doses of the herbicide 2,4-D. Specific biomarkers that characterize the phytoindicator potential of this species were determined. Gas exchange, chlorophyll a fluorescence, photosynthetic pigments, and the activities of antioxidant enzymes and cellulase were performed after 24, 96 and/or 396 hours after 2,4-D application (HAA). The herbicide caused higher antioxidant enzymatic activity 24 HAA and damage to the photosynthetic machinery after 96 HAA. Reduction in gas exchange, chlorophyll content, and photochemical traits were observed. Increased respiratory rates, non-photochemical quenching, and carotenoid concentrations in 2,4-D-treated plants were important mechanisms in the defense against the excess energy absorbed. Furthermore, the absence of leaf symptoms suggested tolerance of D. alata to 2,4-D. Nevertheless, changes in the photosynthetic and biochemical metabolism of D. alata are useful as early indicators of herbicide contamination, especially in the absence of visual symptoms. These results are important for early monitoring of plants in conserved areas and for preventing damage to sensitive species.


Assuntos
Herbicidas , Árvores , Ácido 2,4-Diclorofenoxiacético/toxicidade , Antioxidantes/metabolismo , Biomarcadores/metabolismo , Brasil , Clorofila/metabolismo , Clorofila A/metabolismo , Ecossistema , Herbicidas/farmacologia , Fotossíntese , Folhas de Planta/metabolismo , Árvores/metabolismo
3.
Environ Monit Assess ; 194(4): 293, 2022 Mar 24.
Artigo em Inglês | MEDLINE | ID: mdl-35332388

RESUMO

Although the Brazilian Atlantic Forest is a hotspot for biodiversity conservation, it is one of the most fragmented biomes in Brazil and also affected by air pollutants such as polycyclic aromatic hydrocarbons (PAHs). The study aimed at measuring the PAH levels in leaf trees, litter, soil, and atmosphere of two Atlantic Forest remnants impacted by air pollutants during summer and winter periods; identifying emission sources; and investigating the relationship among the PAH concentrations in the soil, litter, leaves, and atmosphere. Site 1 is situated in the largest South American city, with rainy summers and dry winters, and characterized by intense urbanization. Site 2 is situated in a large forest continuum and is characterized by wet climate with no defined dry seasons. It is more distant from the anthropogenic urban sources than site 1, but closer to an industrial complex. No differences were detected for PAH amounts (summer + winter) in the particles and wet deposition fluxes between sites. In site 1, the highest concentrations of PAHs in the particles were measured during the winter while in the leaf trees were measured during the summer. PMF model showed that sites 1 and 2 receive PAHs mainly from vehicle emissions and industrial activities, respectively. The accumulation of heavier compounds in soil and leaves via wet deposition was more evident in site 2. PAHs were mainly stored in the soil of site 1, contrasting with site 2, where they were retained in litter, which were attributed to disturbances of decomposer community and reduced decomposition rates.


Assuntos
Monitoramento Ambiental , Solo , Atmosfera , Brasil , Florestas
4.
Ecotoxicology ; 29(2): 217-225, 2020 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-32030573

RESUMO

The expansion of land use for agricultural interests and the excessive use of herbicides are among the causes of biodiversity losses in the Brazilian Cerrado biome. Therefore, we aimed to test the hypothesis that Dipteryx alata Vogel, a common species in this biome, is sensitive to nicosulfuron because of its high phytotoxicity. We evaluated physiological, biochemical and morphological responses in D. alata plants exposed to increasing doses of the herbicide. Young plants were transplanted to 10 L pots containing substrate composed of soil and sand (2:1) after fertilization. After an acclimation period, the following doses of nicosulfuron were applied: 0 (control), 6, 12, 24, 48, and 60 g a.e. ha-1. The experiment was conducted in a randomized block design factorial scheme with six doses of nicosulfuron, three evaluation times, and five replicates per treatment. The effects of the herbicide were assessed by measuring gas exchange, chlorophyll a fluorescence, photosynthetic pigments, membrane permeability, antioxidant enzymes and acetolactate synthase. Nicosulfuron altered the photosynthetic machinery and enzymatic metabolism of D. alata. Reductions in physiological traits, increased catalase and ascorbate peroxidase activities, enhanced malondialdehyde concentrations rate of electrolyte leakage and decreased acetolactate synthase activity in response to nicosulfuron all suggest that D. alata is sensitive to this herbicide.


Assuntos
Dipteryx/fisiologia , Herbicidas/toxicidade , Piridinas/toxicidade , Compostos de Sulfonilureia/toxicidade , Agricultura , Antioxidantes/metabolismo , Brasil , Catalase/metabolismo , Clorofila A , Fotossíntese
5.
Environ Res ; 176: 108527, 2019 09.
Artigo em Inglês | MEDLINE | ID: mdl-31203049

RESUMO

Evaluations of ozone effects on vegetation across the globe over the last seven decades have mostly incorporated exposure levels that were multi-fold the preindustrial concentrations. As such, global risk assessments and derivation of critical levels for protecting plants and food supplies were based on extrapolation from high to low exposure levels. These were developed in an era when it was thought that stress biology is framed around a linear dose-response. However, it has recently emerged that stress biology commonly displays non-linear, hormetic processes. The current biological understanding highlights that the strategy of extrapolating from high to low exposure levels may lead to biased estimates. Here, we analyzed a diverse sample of published empirical data of approximately 500 stimulatory, hormetic-like dose-responses induced by ozone in plants. The median value of the maximum stimulatory responses induced by elevated ozone was 124%, and commonly <150%, of the background response (control), independently of species and response variable. The maximum stimulatory response to ozone was similar among types of response variables and major plant species. It was also similar among clades, between herbaceous and woody plants, between deciduous and evergreen trees, and between annual and perennial herbaceous plants. There were modest differences in the stimulatory response between genera and between families which may reflect different experimental designs and conditions among studies. The responses varied significantly upon type of exposure system, with open-top chambers (OTCs) underestimating the maximum stimulatory response compared to free-air ozone-concentration enrichment (FACE) systems. These findings suggest that plants show a generalized hormetic stimulation by ozone which is constrained within certain limits of biological plasticity, being highly generalizable, evolutionarily based, and maintained over ecological scales. They further highlight that non-linear responses should be taken into account when assessing the ozone effects on plants.


Assuntos
Poluentes Atmosféricos/toxicidade , Ozônio/toxicidade , Plantas/efeitos dos fármacos , Hormese/efeitos dos fármacos , Fenômenos Fisiológicos Vegetais , Árvores
6.
Ecotoxicol Environ Saf ; 141: 242-250, 2017 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-28359990

RESUMO

The wide use of the herbicide diuron has compromised surrounding uncultivated areas, resulting in acute and/or chronic damage to non-target plants. Thus, the aim of this research was to evaluate physiological and morphoanatomical responses in Bauhinia variegata L. plants to different doses of diuron. Seedlings of 90-day-old B. variegata were transplanted into 10liter pots. After an acclimation period (about 30 days), treatments consisting of different diuron doses were applied: 0 (control), 400, 800, 1600, and 2400g ai ha-1. The experiment was conducted in a randomized block design in a 5×5 factorial scheme with five doses of diuron five evaluation times, and five replicates per treatment. Anatomical and physiological injuries were observed in leaves of Bauhina variegata 10h after diuron application. Disruption of waxes was observed on both sides of the leaves of plants exposed since the lowest dose. Plasmolysis in cells were observed in treated leaves; more severe damage was observed in plants exposed to higher doses, resulting in rupture of epidermis. The diuron herbicide also caused gradual reduction in the gas exchange and chlorophyll fluorescence variables. Among the morphoanatomical and physiological variables analyzed, the non-invasive ones (e.g., ETR, YII, and Fv/Fm) may be used as biomarkers of diuron action in association with visible symptoms. In addition, changes in leaf blade waxes and chlorophyll parenchyma damage may also be considered additional leaf biomarkers of diuron herbicide action.


Assuntos
Bauhinia/efeitos dos fármacos , Diurona/toxicidade , Monitoramento Ambiental/métodos , Herbicidas/toxicidade , Fotossíntese/efeitos dos fármacos , Folhas de Planta/efeitos dos fármacos , Bauhinia/metabolismo , Bauhinia/fisiologia , Bauhinia/ultraestrutura , Clorofila/metabolismo , Relação Dose-Resposta a Droga , Folhas de Planta/metabolismo , Folhas de Planta/fisiologia , Folhas de Planta/ultraestrutura , Ceras/metabolismo
7.
Ecotoxicol Environ Saf ; 134P1: 72-79, 2016 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-27591705

RESUMO

The foliar accumulation and enrichment factor for 36 elements were studied in Psidium guajava 'Paluma' (fruit tropical tree) and Tibouchina pulchra Cogn. (native tree of the Atlantic rainforest) plants exposed around the city of Cubatão/Brazil, to propose a biomonitoring species in the Atlantic rainforest. The field experiments were conducted in six sites from November/2009 to April/2011. Parallel exposures of plants to filtered air in open-top chambers were performed to determine the background leaf concentrations of all elements. Both plants were enriched with elements (Ni, La, Fe, Ba, Al, Co, Pb, Hg and Mn) that characterize the industrial area of Cubatão, Brazil. P. guajava is a better option for biomonitoring toxic elements in Cubatão, since it was able to enrich higher metal levels than T. pulchra. Furthermore, P. guajava showed a better spatial and temporal variations in metal levels Cubatão.

8.
Ecotoxicol Environ Saf ; 118: 149-157, 2015 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-25938695

RESUMO

The risks posed by nutrient deposition due to air pollution on ecosystems and their respective services to human beings can be appropriately estimated by bioindicator plants when they are well acclimated to the study region environmental conditions. This assumption encouraged us to comparatively evaluate the accumulation potential of ryegrass cv. Lema and guava cv. Paluma macro and micronutrients. We also indicated the most appropriate species for biomonitoring nutrient contamination risks in tropical areas of Southeastern Brazil, which are characterized by marked dry and wet seasons and complex mixtures of air pollutants from different sources (industries, vehicle traffic and agriculture). The study was conducted in 14 sites with different neighboring land uses, within the Metropolitan Region of Campinas, central-eastern region of São Paulo State. The exposure experiments with ryegrass and guava were consecutively repeated 40 (28 days each) and 12 (84 days each) times, respectively, from Oct/2010 to Sept/2013. Macro and micronutrients were analyzed and background concentrations and enrichment ratios (ER) were estimated to classify the contamination risk within the study region. Significantly higher ER suggested that ryegrass were the most appropriate accumulator species for N, S, Mg, Fe, Mn, Cu and Zn deposition and guava for K, Ca, P and B deposition. Based on these biomonitoring adjustments, we concluded that the nutrient deposition was spatially homogeneous in the study area, but clear seasonality in the contamination risk by nutritional inputs was evidenced. Significantly higher contamination risk by S, Fe, K and B occurred during the dry season and enhanced contamination risk by Mn, Cu and Zn were highlighted during the wet season. Distinctly high contamination risk was estimated for S, Fe and Mn in several exposure experiments.


Assuntos
Poluentes Atmosféricos/metabolismo , Monitoramento Ambiental/métodos , Lolium/metabolismo , Psidium/metabolismo , Brasil , Clima , Estações do Ano
9.
Chemosphere ; 361: 142449, 2024 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-38801900

RESUMO

Changes in temperature and the deposition of potential pollutants in the soil, such as heavy metals, may damage plant communities, altering their physiological processes. High temperature may also cause a series of morpho-anatomical, physiological and biochemical changes in plants. However, tolerant plant species tend to restrict these harmful effects. The present study investigates the impact of atmospheric warming on the accumulation capacity of heavy metals (Zn, Ni, Cu) in the roots and leaves of a pioneer species (Croton floribundus) and a non-pioneer species (Esenbeckia leiocarpa) native to the Atlantic Forest of southeastern Brazil. The experimental design involved exposing the plants to two soil treatments: without excess metals (-M) and with excess metals (+M), along with varying thermoperiods of 26 °C day/19 °C night and 32 °C day/20 °C night in growth chambers. Over a 28-day period, we assessed weekly metal content, translocation, growth parameters, a non-enzymatic antioxidant (glutathione) and indicators of cell damage or oxidative stress (chlorophylls a and b, total chlorophyll (a+b), carotenoids, malondialdehyde and conjugated diene hydroperoxide contents). Both species exhibited increased metal accumulation under excess metals, employing distinct translocation strategies. C. floribundus showed high translocation rates of Ni to leaves and E. leiocarpa immobilized Ni in the roots. Atmospheric warming reduced Cu and Ni translocation from roots to leaves in both species. C. floribundus displayed lower physiological damage compared to E. leiocarpa, demonstrating robust growth. We concluded that the pioneer species possessed greater tolerance to oxidative stress induced by temperature and metal-related environmental factors than the non-pioneer species, confirming our hypothesis. In addition, our finding provides valuable insights for conservation and management of ecosystems affected by climatic and pollutant changes.


Assuntos
Florestas , Metais Pesados , Poluentes do Solo , Metais Pesados/toxicidade , Poluentes do Solo/toxicidade , Poluentes do Solo/análise , Brasil , Folhas de Planta/metabolismo , Folhas de Planta/efeitos dos fármacos , Temperatura Alta , Raízes de Plantas/metabolismo , Raízes de Plantas/efeitos dos fármacos , Clorofila/metabolismo , Estresse Oxidativo/efeitos dos fármacos , Solo/química
10.
Ecotoxicol Environ Saf ; 96: 80-5, 2013 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-23871204

RESUMO

We investigated whether the fructan content, a storage carbohydrate, of Lolium multiflorum 'Lema' plants grown in a subtropical urban environment characterized by typical diurnal profiles of air pollutants and meteorological conditions changed over the course of a day during different seasons. Plants were collected every 2h on the last day of each two-month seasonal field experiment and separated into shoot (stubble or stubble+leaf blades) and roots for carbohydrate analyses and biomass determination. Diurnal contents of total fructose in the stubbles increased with high temperatures. In the roots, fructose accumulation showed a positive relation with hourly variations of both temperature and particulate matter and a negative relation with irradiance and SO2. Seasonal variation in shoot and root biomasses coincided with the seasonal variation of total fructose and were negatively affected by relative humidity and SO2, respectively. We concluded that hourly changes of fructans over the course of a day may increase the ability of L. multiflorum to tolerate short-term oscillations in weather and air pollution commonly observed in the subtropical urban environment, increasing its efficiency in monitoring air quality.


Assuntos
Poluentes Atmosféricos/toxicidade , Monitoramento Ambiental , Frutanos/análise , Lolium/efeitos dos fármacos , Tempo (Meteorologia) , Poluentes Atmosféricos/análise , Frutanos/metabolismo , Lolium/química , Estações do Ano , Dióxido de Enxofre/análise , Dióxido de Enxofre/toxicidade , População Urbana
11.
Ecotoxicol Environ Saf ; 79: 139-147, 2012 May.
Artigo em Inglês | MEDLINE | ID: mdl-22285658

RESUMO

This study extends the current knowledge regarding the use of plants for the passive accumulation of anthropogenic PAHs that are present in the atmospheric total suspended particles (TSP) in the tropics and sub-tropics. It is of major relevance because the anthropic emissions of TSP containing PAHs are significant in these regions, but their monitoring is still scarce. We compared the biomonitor efficiency of Lolium multiflorum 'Lema' and tropical tree species (Tibouchina pulchra and Psidium guajava 'Paluma') that were growing in an intensely TSP-polluted site in Cubatão (SE Brazil), and established the species with the highest potential for alternative monitoring of PAHs. PAHs present in the TSP indicated that the region is impacted by various emission sources. L. multiflorum showed a greater efficiency for the accumulation of PAH compounds on their leaves than the tropical trees. The linear regression between the logBCF and logKoa revealed that L. multiflorum is an efficient biomonitor of the profile of light and heavy PAHs present in the particulate phase of the atmosphere during dry weather and mild temperatures. The grass should be used only for indicating the PAHs with higher molecular weight in warmer and wetter periods.


Assuntos
Poluentes Atmosféricos/análise , Monitoramento Ambiental/métodos , Folhas de Planta/química , Hidrocarbonetos Policíclicos Aromáticos/análise , Árvores/química , Poluentes Atmosféricos/metabolismo , Atmosfera/química , Brasil , Lolium/química , Lolium/metabolismo , Folhas de Planta/metabolismo , Hidrocarbonetos Policíclicos Aromáticos/metabolismo , Árvores/metabolismo , Tempo (Meteorologia)
12.
J Environ Monit ; 14(7): 1959-67, 2012 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-22706014

RESUMO

This study aimed to analyze critically the potential of Ipomoea nil'Scarlet O'Hara' for O(3) biomonitoring in the sub-tropics. Four field experiments (one in each season of 2006) were carried out in a location of the city of São Paulo mainly polluted by O(3). Each experiment started with 50 plants, and lasted 28 days. Sub-lots of five plants were taken at intervals between three or four days long. Groups of four plants were also exposed in closed chambers to filtered air or to 40, 50 or 80 ppb of O(3) for three consecutive hours a day for six days. The percentage of leaf injury (interveinal chloroses and necroses), the concentrations of ascorbic acid (AA) and the activity of superoxide dismutase (SOD) and peroxidases (POD) were determined in the 5th, 6th and 7th oldest leaves on the main stem of the plants taken in all experiments. Visible injury occurred in the plants from all experiments. Seasonality in the antioxidant responses observed in plants grown under field conditions was associated with meteorological variables and ozone concentrations five days before leaf analyses. The highest levels of antioxidants occurred during the spring. The percentage of leaf injury was explained (R(2) = 0.97, p < 0.01) by the reduction in the levels of AA and activity of POD five days before the leaf analyses and by the reduction in the levels of particulate matter, and enhancement of temperature and global radiation 10 days before this same day. Although I. nil may be employed for qualitative O(3) biomonitoring, its efficiency for quantitative biomonitoring in the sub-tropics may be compromised, depending on how intense the oxidative power of the environment is.


Assuntos
Poluentes Atmosféricos/análise , Monitoramento Ambiental/métodos , Ipomoea nil/efeitos dos fármacos , Ozônio/análise , Poluentes Atmosféricos/toxicidade , Ipomoea nil/metabolismo , Ipomoea nil/fisiologia , Ozônio/toxicidade , Peroxidases/metabolismo , Folhas de Planta/efeitos dos fármacos , Folhas de Planta/metabolismo , Folhas de Planta/fisiologia , Superóxido Dismutase/metabolismo
13.
Sci Total Environ ; 851(Pt 1): 158052, 2022 Dec 10.
Artigo em Inglês | MEDLINE | ID: mdl-35988596

RESUMO

This study brings information on the dynamics of C and N in urban forests in a subtropical region. We tested the hypothesis that C and N isotopic sign of leaves and soil and physiological traits of trees would vary from center to periphery in a megacity, considering land uses, intensity of automotive fleet and microclimatic conditions. 800 trees from four fragments were randomly chosen. Soil samples were collected at every 10 cm in trenches up to 1 m depth to analyze C and N contents. Both, plants and soil were assessed for δ13C, δ15N, %C and %N. Physiological traits [carbon assimilation (A)], CO2 internal and external pressure ratio (Pi/Pa) and intrinsic water use efficiency iWUE were estimated from δ13C and Δ Î´13C in leaves and soil ranged from -27.42 ‰ to -35.39 ‰ and from -21.22 ‰ to -28.18 ‰, respectively, and did not vary along the areas. Center-periphery gradient was not evidenced by C. Emissions derived from fossil fuel and distinct land uses interfered at different levels in δ13C signature. δ15N in the canopy and soil varied clearly among urban forests, following center-periphery gradient. Leaf δ15N decreased from the nearest forest to the city center to the farthest, ranging from <3 ‰ to <-3 ‰. δ15N was a good indicator of atmospheric contamination by NOx emitted by vehicular fleet and a reliable predictor of land use change. %N followed the same trend of δ15N either for soils or leaves. Forest fragments located at the edges of the center-periphery gradient presented significantly lower A and Pi/Pa ratio and higher iWUE. These distinct physiological traits were attributed to successional stage and microclimatic conditions. Results suggest that ecosystem processes related to C and N and ecophysiological responses of urban forests vary according to land use and vehicular fleet.


Assuntos
Ecossistema , Solo , Carbono , Dióxido de Carbono , Florestas , Combustíveis Fósseis , Plantas , Árvores , Água
14.
Plants (Basel) ; 11(23)2022 Dec 06.
Artigo em Inglês | MEDLINE | ID: mdl-36501445

RESUMO

Fluoride is one of the main phytotoxic environmental pollutants, and high concentrations (10-30 mg L-1) are commonly detected in surface and groundwater. Little, however, is known about the effects of this pollutant on crops that require irrigation during their development, which, in addition to phytotoxicity, may cause negative human health effects. Thus, the aim of this study was to characterize the effects of potassium fluoride (KF) on the germination of lettuce seeds and identify the physiological and anatomical markers of this pollutant's action on plants exposed to it during growth. Initially, lettuce seeds were sown in gerboxes and soaked in solutions containing 0 mg L-1, 10 mg L-1, 20 mg L-1, and 30 mg L-1 KF. Plants grown in a greenhouse were treated daily with KF irrigation at the same KF concentrations for 40 days. KF exposure reduced the germination rate and germination speed index of lettuce seeds at 20 mg L-1 and 30 mg L-1, resulting in compromised root development at the highest KF concentration. Lettuce plants displayed a slight photosynthesis reduction and a significant photochemical efficiency decrease after exposures to all KF concentrations. Lower chlorophyll contents and nitrogen balance indices were observed in plants exposed to 30 mg L-1 KF. On the other hand, increases in phenolic compounds and malondialdehyde were noted with increasing KF concentrations. Lettuce plants can, therefore, accumulate fluoride in leaves when irrigated with KF-rich water. The investigated physiological and biochemical variables were proven to be adequate fluoride action biomarkers in lettuce plants and may become an important tool in the study of olericulture contaminants.

15.
PeerJ ; 10: e13434, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35602888

RESUMO

Background: Fluoride (F) is one of the main environmental pollutants, and high concentrations are commonly detected in the air and in both surface and groundwater. However, the effects of this pollutant on seed germination and on the initial growth of crop seedlings are still poorly understood. In this context, the aim of this study was to assess morphoanatomical, physiological and biochemical fluoride effect indicators in Phaseolus vulgaris L. seeds and seedlings. Methods: P. vulgaris seeds were exposed to a liquid potassium fluoride solution (KF, pH 6.0) at concentrations of 0 (control), 10, 20, 30 mg L-1 for 7 days. A completely randomized experimental design was applied, consisting of four treatments with four replications each. During the experimental period, physiological (7 days) anatomical and histochemical (2 days), biochemical and chemical (4 days) assessments. An analysis of variance was performed followed by Dunnett's test. to determine significant differences between the KF-exposed groups and control seeds; and a multivariate analysis was performed. Results: The germination parameters, and anatomical, morphological, physiological, biochemical and nutritional characteristics of the seedlings did not show negative effects from exposure to KF at the lowest doses evaluated. On the other hand, treatment with the highest dose of KF (30 mg L-1) resulted in a lower germination rate index and increase in abnormal seedlings, and higher electrical conductivity. A lower root length, magnesium content and photochemical efficiency were also observed. The exposure of P. vulgaris to KF, regardless the dose did not affect seeds anatomy and the accumulation of starch and proteins, in relation to the control group. Conclusions: Our findings demonstrated that P. vulgaris seedlings were tolerant to KF solutions up to 20 mg L-1, and sensitive when exposed to 30 mg KF L-1.


Assuntos
Phaseolus , Plântula , Fluoretos/farmacologia , Germinação , Phaseolus/química , Sementes/química
16.
Ecotoxicol Environ Saf ; 74(6): 1645-52, 2011 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-21741708

RESUMO

The occurrence of visible leaf injury caused by ozone in Ipomoea nil 'Scarlet O'Hara' may be regulated by their redox state, affecting its bioindicator efficiency. Thus, this study aimed to determine whether the redox state of I. nil plants in a subtropical area (São Paulo, SE-Brazil) contaminated by ozone oscillates, and to identify the environmental factors behind these variations. We comparatively evaluated indicators of redox state (ascorbic acid, glutathione, superoxide dismutase, ascorbate peroxidase, glutathione reductase) and leaf injury during nine field experiments of 28 days each. The variations in the redox indicators were explained by the combined effects of chronic levels of ozone and meteorological variables (mainly global solar radiation and air temperature) 3-6 days prior to the sampling days. The ascorbic acid and glutathione were crucial for increasing plant tolerance to ozone. Weak visible injury was observed in all experiments and occurred in leaves with low levels of ascorbic and dehydroascorbic acids.


Assuntos
Poluentes Atmosféricos/toxicidade , Ipomoea nil/efeitos dos fármacos , Ozônio/toxicidade , Ácido Ascórbico/metabolismo , Brasil , Ácido Desidroascórbico/metabolismo , Glutationa/metabolismo , Glutationa Redutase/metabolismo , Ipomoea nil/crescimento & desenvolvimento , Ipomoea nil/metabolismo , Oxirredução , Estresse Oxidativo , Folhas de Planta/efeitos dos fármacos , Folhas de Planta/metabolismo , Superóxido Dismutase/metabolismo , Temperatura
17.
Sci Total Environ ; 769: 145080, 2021 May 15.
Artigo em Inglês | MEDLINE | ID: mdl-33736256

RESUMO

Eugenia uniflora L. is an important fruit tree native to tropical South America that adapts to different habitats, thanks to its metabolic diversity and ability to adjust the leaf antioxidant metabolism. We hypothesized that this metabolic diversity would also enable E. uniflora to avoid oxidative damage and tolerate the enhanced ozone (O3) concentrations that have been registered in the (sub)tropics. We investigated whether carbohydrates, polyphenols and antioxidants are altered and markers of oxidative damage (ROS accumulation, alterations in leaf gas exchange, growth and biomass production) are detected in plants exposed to two levels of O3 (ambient air and twice elevated ozone level in a O3-FACE system for 75 days). Phytotoxic O3 dose above a threshold of 0 nmol m-2 s-1 (POD0) and accumulated exposure above 40 ppb (AOT40) were 3.6 mmol m-2 and 14.898 ppb h at ambient, and 4.7 mmol m-2 and 43.881 ppb h at elevated O3. Twenty-seven primary metabolites and 16 phenolic compounds were detected in the leaves. Contrary to the proposed hypothesis that tropical broadleaf trees are relatively O3 tolerant, we concluded that E. uniflora plants are sensitive to elevated O3 concentrations. Experimental POD0 values were lower than the critical levels for visible foliar O3, because of low stomatal conductance. In spite of this low stomatal O3 uptake, we found classic O3 injury, e.g. reduction in carbohydrates and fatty acids concentrations; non-significant changes in the polyphenol profile; inefficient antioxidant responses; increased contents of ROS and indicators of lipid peroxidation; reductions in stomatal conductance, net photosynthesis, root/shoot ratio and height growth. However, we also found some compensation mechanisms, e.g. increased leaf concentration of polyols for protecting the membranes, and increased leaf number for compensating the decline of photosynthetic rate. These results help filling the knowledge gap about tropical tree responses to O3.


Assuntos
Poluentes Atmosféricos , Eugenia , Ozônio , Poluentes Atmosféricos/análise , Ozônio/análise , Fotossíntese , Folhas de Planta/química , América do Sul , Árvores
18.
Environ Pollut ; 268(Pt A): 115797, 2021 Jan 01.
Artigo em Inglês | MEDLINE | ID: mdl-33065365

RESUMO

Passive biomonitoring was applied in four Atlantic forest plots in southeast Brazil, affected by different levels of trace metal pollution (OP site located in Minas Gerais State and PEFI, PP and STG located in São Paulo State). Native tree species were selected as biomonitors according to their abundance in each plot and successional classification. Current trace metal concentrations in total suspended particles, leaves of non-pioneer (NPi) and pioneer (Pi) species, topsoil (0-20 cm) and litter and concentration ratios at the plant/soil interface were analyzed to verify the atmosphere-plant-soil interactions, basal concentrations, spatial variations and metal accumulation at the ecosystem level. Redundant analysis helped to identify similar characteristics of metal concentrations in PP and PEFI, which can be influenced by the high concentrations of elements related to anthropogenic inputs. Analysis of variance and multivariate statistics indicated that the trees of OP presented higher concentrations of Cr, Fe, Mn and Ni than those in the other sites. High enrichment of Cd, Fe, Ni in non-pioneer plants indicated that the PP forest (initially considered as the least polluted) has still been affected by metal pollution. Soil collected in STG was enriched by all elements, however these elements were low available for plant uptake. Metal deposited in leaves and litter was an important sink for soil cycling, nevertheless, these metals are not bioavailable in most cases. Non-pioneer tree species revealed to be more appropriate than pioneer species to indicate the current panorama of the contamination and bioavailability levels of trace metals in the tree community-litter-soil interface of the Atlantic forest remnants included in this study.


Assuntos
Poluição do Ar , Metais Pesados , Poluentes do Solo , Oligoelementos , Brasil , Ecossistema , Monitoramento Ambiental , Metais Pesados/análise , Solo , Poluentes do Solo/análise , Oligoelementos/análise , Árvores
19.
Ecotoxicol Environ Saf ; 73(4): 664-70, 2010 May.
Artigo em Inglês | MEDLINE | ID: mdl-20060591

RESUMO

We intended to establish how efficient the leaf antioxidant responses of C. echinata are against oxidative environmental conditions observed in an urban environment and their relations to growth and biomass parameters. Plants were grown for 15 months in four sites: Congonhas and Pinheiros, affected by pollutants from vehicular emissions; Ibirapuera, affected by high O(3) concentrations; and a greenhouse with filtered air. Fifteen plants were quarterly removed from each site for analysis of antioxidants, growth and biomass. Plants growing in polluted sites showed alterations in their antioxidants. They were shorter, had thicker stems and produced less leaf biomass than plants maintained under filtered air. The fluctuations in the levels of antioxidants were significantly influenced by combined effects of climatic and pollution variables. The higher were the antioxidant responses and the concentrations of pollutant markers of air contamination in each site the slower were the growth and biomass production.


Assuntos
Poluentes Atmosféricos/toxicidade , Antioxidantes/metabolismo , Caesalpinia/efeitos dos fármacos , Estresse Oxidativo , Ácido Ascórbico/metabolismo , Brasil , Caesalpinia/crescimento & desenvolvimento , Caesalpinia/metabolismo , Cidades , Glutationa/metabolismo , Ozônio/toxicidade , Peroxidases/metabolismo , Folhas de Planta/efeitos dos fármacos , Folhas de Planta/crescimento & desenvolvimento , Folhas de Planta/metabolismo , Caules de Planta/efeitos dos fármacos , Caules de Planta/crescimento & desenvolvimento , Caules de Planta/metabolismo , Superóxido Dismutase/metabolismo , Emissões de Veículos/toxicidade
20.
Environ Sci Pollut Res Int ; 27(20): 25363-25373, 2020 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-32347483

RESUMO

Chloroplasts have luminescent metabolites-chlorophyll being the most known one-whose fluorescence emission may be a useful tool to assess the physiological status of the plant. Some antioxidants (flavonoids and carotenoids), and byproducts of membrane rupture (lipofuscins) and chlorophyll degradation (pheophytins), are chloroplasts' fluorescent metabolites directly involved in plant response to environmental stressors and pollutants and may act as a biomarker of stress. Here we hypothesized that climatic variations and air pollutants induce alterations in the emission profile of chloroplasts' fluorescent metabolites in Tillandsia usneoides (Bromeliaceae). To test this hypothesis, an active biomonitoring study was performed during 2 years in five polluted sites located at the Metropolitan Region of Campinas (São Paulo State, Brazil), aiming to identify target chloroplasts' fluorescent metabolites acting as biomarkers of environmental stress. In situ identification and quantification of the intensity of the fluorescence emission from target metabolites (flavonoids, carotenoids, lipofuscins, and pheophytins) were performed by the observation of fresh leaf sections under confocal laser scanning microscopy. Changes in the profile of fluorescence emission were correlated with local climate and air pollution data. The fluorescence emissions of flavonoids and carotenoids varied seasonally, with significant influence of rainfall and NO2. Our results expand the use of T. usneoides as a bioindicator by using alterations in the fluorescence emission profile of chloroplast metabolites. This application may be especially interesting for NO2 biomonitoring.


Assuntos
Poluentes Atmosféricos/análise , Biomarcadores , Brasil , Carotenoides , Cloroplastos , Monitoramento Ambiental , Flavonoides , Fluorescência , Lipofuscina , Feofitinas , Estações do Ano , Clima Tropical
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa