Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 37
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Environ Sci Technol ; 50(23): 12705-12712, 2016 12 06.
Artigo em Inglês | MEDLINE | ID: mdl-27780352

RESUMO

Limited studies have been conducted on mercury concentrations in the polar cryosphere and the factors affecting the distribution of mercury within sea ice and snow are poorly understood. Here we present the first comprehensive seasonal study of elemental and total mercury concentrations in the Antarctic sea ice environment covering data from measurements in air, sea ice, seawater, snow, frost flowers, and brine. The average concentration of total mercury in sea ice decreased from winter (9.7 ng L-1) to spring (4.7 ng L-1) while the average elemental mercury concentration increased from winter (0.07 ng L-1) to summer (0.105 ng L-1). The opposite trends suggest potential photo- or dark oxidation/reduction processes within the ice and an eventual loss of mercury via brine drainage or gas evasion of elemental mercury. Our results indicate a seasonal variation of mercury species in the polar sea ice environment probably due to varying factors such as solar radiation, temperature, brine volume, and atmospheric deposition. This study shows that the sea ice environment is a significant interphase between the polar ocean and the atmosphere and should be accounted for when studying how climate change may affect the mercury cycle in polar regions.


Assuntos
Camada de Gelo , Mercúrio , Poluentes Atmosféricos , Regiões Antárticas , Mudança Climática , Gelo , Estações do Ano
2.
Sci Total Environ ; 912: 169567, 2024 Feb 20.
Artigo em Inglês | MEDLINE | ID: mdl-38145686

RESUMO

The recent characterization of antibiotic resistance genes (ARGs) in clouds evidenced that the atmosphere actively partakes in the global spreading of antibiotic resistance worldwide. Indeed, the outdoor atmosphere continuously receives large quantities of particles of biological origins, emitted from both anthropogenic or natural sources at the near Earth's surface. Nonetheless, our understanding of the composition of the atmospheric resistome, especially at mid-altitude (i.e. above 1000 m a.s.l.), remains largely limited. The atmosphere is vast and highly dynamic, so that the diversity and abundance of ARGs are expected to fluctuate both spatially and temporally. In this work, the abundance and diversity of ARGs were assessed in atmospheric aerosol samples collected weekly between July 2016 and August 2017 at the mountain site of puy de Dôme (1465 m a.s.l., central France). Our results evidence the presence of 33 different subtypes of ARGs in atmospheric aerosols, out of 34 assessed, whose total concentration fluctuated seasonally from 59 to 1.1 × 105 copies m-3 of air. These were heavily dominated by genes from the quinolone resistance family, notably the qepA gene encoding efflux pump mechanisms, which represented >95 % of total ARGs concentration. Its abundance positively correlated with that of bacteria affiliated with the genera Kineococcus, Neorhizobium, Devosia or Massilia, ubiquitous in soils. This, along with the high abundance of Sphingomonas species, points toward a large contribution of natural sources to the airborne ARGs. Nonetheless, the increased contribution of macrolide resistance (notably the erm35 gene) during winter suggests a sporadic diffusion of ARGs from human activities. Our observations depict the atmosphere as an important vector of ARGs from terrestrial sources. Therefore, monitoring ARGs in airborne microorganisms appears necessary to fully understand the dynamics of antimicrobial resistances in the environment and mitigate the threats they may represent.


Assuntos
Antibacterianos , Farmacorresistência Bacteriana , Humanos , Antibacterianos/farmacologia , Farmacorresistência Bacteriana/genética , Macrolídeos , Genes Bacterianos , França , Aerossóis
3.
Sci Data ; 10(1): 836, 2023 11 28.
Artigo em Inglês | MEDLINE | ID: mdl-38016986

RESUMO

The Minamata Convention, a global and legally binding treaty that entered into force in 2017, aims to protect human health and the environment from harmful mercury (Hg) effects by reducing anthropogenic Hg emissions and environmental levels. The Conference of the Parties is to periodically evaluate the Convention's effectiveness, starting in 2023, using existing monitoring data and observed trends. Monitoring atmospheric Hg levels has been proposed as a key indicator. However, data gaps exist, especially in the Southern Hemisphere. Here, we present over a decade of atmospheric Hg monitoring data at Amsterdam Island (37.80°S, 77.55°E), in the remote southern Indian Ocean. Datasets include gaseous elemental and oxidised Hg species ambient air concentrations from either active/continuous or passive/discrete acquisition methods, and annual total Hg wet deposition fluxes. These datasets are made available to the community to support policy-making and further scientific advancements.

4.
Heliyon ; 9(3): e14608, 2023 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-37020937

RESUMO

Mercury (Hg) fate and transport research requires more effort to obtain a deep knowledge of its biogeochemical cycle, particularly in the Southern Hemisphere and Tropics that are still missing of distributed monitoring sites. Continuous monitoring of atmospheric Hg concentrations and trend worldwide is relevant for the effectiveness evaluation of the Minamata Convention on Mercury (MCM) actions. In this context, Gaseous Elemental Mercury (GEM) and total mercury (THg) in precipitations were monitored from 2013 to 2019 at the Amsterdam Island Observatory (AMS - 37°48'S, 77°34'E) to provide insights into the Hg pathway in the remote southern Indian Ocean, also considering ancillary dataset of Rn-222, CO2, CO, and CH4. GEM average concentration was 1.06 ± 0.07 ng m-3, with a slight increase during the austral winter due to both higher wind speed over the surface ocean and contributions from southern Africa. In wet depositions, THg average concentration was 2.39 ± 1.17 ng L-1, whereas the annual flux averaged 2.04 ± 0.80 µg m-2 year-1. In general, both GEM and Volume-Weighted Mean Concentration (VWMC) of THg did not show an increasing/decreasing trend over the seven-year period, suggesting a substantial lack of evolution about emission of Hg reaching AMS. Air masses Cluster Analysis and Potential Source Contribution Function showed that oceanic evasion was the main Hg contributor at AMS, while further contributions were attributable to long-range transport events from southern Africa, particularly when the occurrence of El Niño increased the frequency of wildfires.

5.
Sci Total Environ ; 904: 166184, 2023 Dec 15.
Artigo em Inglês | MEDLINE | ID: mdl-37586514

RESUMO

The Hg research community needs methods to more accurately measure atmospheric Hg concentrations and chemistry. The Reactive Mercury Active System (RMAS) uses cation exchange, nylon, and PTFE membranes to determine reactive mercury (RM), gaseous oxidized mercury, and particulate-bound mercury (PBM) concentrations and chemistry. New data for Atlanta, Georgia (NRGT) demonstrated that particulate-bound Hg was dominant and the chemistry was primarily N and S HgII compounds. At Great Salt Lake, Utah (GSL), RM was predominately PBM, with NS > organics > halogen > O HgII compounds. At Guadalupe Mountains National Park, Texas (GUMO), halogenated compound concentrations were lowest when air interacting with the site was primarily derived from the Midwest, and highest when the air was sourced from Mexico. At Amsterdam Island, Southern Indian Ocean, compounds were primarily halogenated with some N, S, and organic HgII compounds potentially associated with biological activity. The GEOS-Chem model was applied to see if it predicted measurements at five field sites. Model values were higher than observations at GSL, slightly lower at NRGT, and observations were an order of magnitude higher than modeled values for GUMO and Reno, Nevada. In general, data collected from 13 locations indicated that N, S, and organic RM compounds were associated with city and forest locations, halogenated compounds were sourced from the marine boundary layer, and O compounds were associated with long-range transport. Data being developed currently, and in the past, suggest there are multiple forms of RM that modelers must consider, and PBM is an important component of RM.

6.
Proc Natl Acad Sci U S A ; 106(38): 16114-9, 2009 Sep 22.
Artigo em Inglês | MEDLINE | ID: mdl-19805267

RESUMO

Mercury (Hg) is an extremely toxic pollutant, and its biogeochemical cycle has been perturbed by anthropogenic emissions during recent centuries. In the atmosphere, gaseous elemental mercury (GEM; Hg degrees ) is the predominant form of mercury (up to 95%). Here we report the evolution of atmospheric levels of GEM in mid- to high-northern latitudes inferred from the interstitial air of firn (perennial snowpack) at Summit, Greenland. GEM concentrations increased rapidly after World War II from approximately 1.5 ng m(-3) reaching a maximum of approximately 3 ng m(-3) around 1970 and decreased until stabilizing at approximately 1.7 ng m(-3) around 1995. This reconstruction reproduces real-time measurements available from the Arctic since 1995 and exhibits the same general trend observed in Europe since 1990. Anthropogenic emissions caused a two-fold rise in boreal atmospheric GEM concentrations before the 1970s, which likely contributed to higher deposition of mercury in both industrialized and remotes areas. Once deposited, this toxin becomes available for methylation and, subsequently, the contamination of ecosystems. Implementation of air pollution regulations, however, enabled a large-scale decline in atmospheric mercury levels during the 1980s. The results shown here suggest that potential increases in emissions in the coming decades could have a similar large-scale impact on atmospheric Hg levels.


Assuntos
Poluentes Atmosféricos/análise , Poluição do Ar/análise , Ar/análise , Mercúrio/análise , Algoritmos , Regiões Árticas , Atmosfera/análise , Ecossistema , Monitoramento Ambiental/métodos , Gases/análise , Groenlândia , Humanos , Cinética , Método de Monte Carlo , Neve/química , Fatores de Tempo
7.
Sci Total Environ ; 843: 157020, 2022 Oct 15.
Artigo em Inglês | MEDLINE | ID: mdl-35764153

RESUMO

This Editorial presents an overview of the Special Issue on advances in Arctic mercury (Hg) science synthesized from the 2021 assessment of the Arctic Monitoring and Assessment Programme (AMAP). Mercury continues to travel to Arctic environments and threaten wildlife and human health in this circumpolar region. Over the last decade, progress has been achieved in addressing policy-relevant uncertainties in environmental Hg contamination. This includes temporal trends of Hg, its transport to and within the Arctic, methylmercury cycling, climate change influences, biological effects of Hg on fish and wildlife, human exposure to Hg, and forecasting of Arctic responses to different future scenarios of anthropogenic Hg emissions. In addition, important contributions of Indigenous Peoples to Arctic research and monitoring of Hg are highlighted, including through projects of knowledge co-production. Finally, policy-relevant recommendations are summarized for future study of Arctic mercury. This series of scientific articles presents comprehensive information relevant to supporting effectiveness evaluation of the United Nations Minamata Convention on Mercury.


Assuntos
Mercúrio , Compostos de Metilmercúrio , Animais , Regiões Árticas , Monitoramento Ambiental , Poluição Ambiental , Humanos , Mercúrio/análise
8.
Nat Commun ; 13(1): 4956, 2022 08 24.
Artigo em Inglês | MEDLINE | ID: mdl-36002442

RESUMO

During Arctic springtime, halogen radicals oxidize atmospheric elemental mercury (Hg0), which deposits to the cryosphere. This is followed by a summertime atmospheric Hg0 peak that is thought to result mostly from terrestrial Hg inputs to the Arctic Ocean, followed by photoreduction and emission to air. The large terrestrial Hg contribution to the Arctic Ocean and global atmosphere has raised concern over the potential release of permafrost Hg, via rivers and coastal erosion, with Arctic warming. Here we investigate Hg isotope variability of Arctic atmospheric, marine, and terrestrial Hg. We observe highly characteristic Hg isotope signatures during the summertime peak that reflect re-emission of Hg deposited to the cryosphere during spring. Air mass back trajectories support a cryospheric Hg emission source but no major terrestrial source. This implies that terrestrial Hg inputs to the Arctic Ocean remain in the marine ecosystem, without substantial loss to the global atmosphere, but with possible effects on food webs.


Assuntos
Mercúrio , Regiões Árticas , Ecossistema , Monitoramento Ambiental , Mercúrio/análise , Isótopos de Mercúrio
9.
Environ Sci Technol ; 45(6): 2150-6, 2011 Mar 15.
Artigo em Inglês | MEDLINE | ID: mdl-21341797

RESUMO

Polar regions are subject to contamination by mercury (Hg) transported from lower latitudes, severely impacting human and animal health. Atmospheric Mercury Depletion Events (AMDEs) are an episodic process by which Hg is transferred from the atmospheric reservoir to arctic snowpacks. The fate of Hg deposited during these events is the subject of numerous studies, but its speciation remains unclear, especially in terms of environmentally relevant forms such as bioavailable mercury (BioHg). Here, using a bacterial mer-lux biosensor, we report the fraction of newly deposited Hg at the surface and at the bottom of the snowpack that is bioavailable. Snow samples were collected over a two-month arctic field campaign in 2008. In surface snow, BioHg is related to atmospheric Hg deposition and snow fall events were shown to contribute to higher proportions of BioHg than AMDEs. Based on our data, AMDEs represent a potential source of 20 t.y(-1) of BioHg, while wet and dry deposition pathways may provide 135-225 t.y(-1) of BioHg to Arctic surfaces.


Assuntos
Poluentes Atmosféricos/química , Fenômenos Ecológicos e Ambientais , Mercúrio/química , Neve/química , Poluentes Atmosféricos/análise , Poluição do Ar/estatística & dados numéricos , Regiões Árticas , Monitoramento Ambiental , Mercúrio/análise
10.
Phys Chem Chem Phys ; 13(37): 16772-9, 2011 Oct 06.
Artigo em Inglês | MEDLINE | ID: mdl-21860852

RESUMO

The determination of the solvation shell of Hg(II)-containing molecules and especially the interaction between Hg(II) and water molecules is the first requirement to understand the transmembrane passage of Hg into the cell. We report a systematic DFT study by stepwise solvation of HgCl(2) including up to 24 water molecules. In order to include pH and salinity effects, the solvation patterns of HgClOH, Hg(OH)(2) and HgCl(3)(-) were also studied using 24 water molecules. In all cases the hydrogen bond network is crucial to allow orbital-driven interactions between Hg(II) and the water molecules. DFT Born-Oppenheimer molecular dynamics simulations starting from the stable HgCl(2)-(H(2)O)(24) structure revealed that an HgCl(2)-(H(2)O)(3) trigonal bipyramid effective solute appears and then the remaining 21 water molecules build a complete first solvation shell, in the form of a water-clathrate. In the HgCl(2), HgClOH, Hg(OH)(2)-(H(2)O)(24) optimized structures Hg also directly interacts with 3 water molecules from an orbital point of view (three Hg-O donor-acceptor type bonds). All the other interactions are through hydrogen bonding. The cluster-derived solvation energies of HgCl(2), HgClOH and Hg(OH)(2) are estimated to be -34.4, -40.1 and -47.2 kcal mol(-1), respectively.


Assuntos
Cloreto de Mercúrio/química , Compostos de Mercúrio/química , Teoria Quântica , Concentração de Íons de Hidrogênio , Soluções , Termodinâmica
11.
J Phys Chem A ; 115(22): 5602-8, 2011 Jun 09.
Artigo em Inglês | MEDLINE | ID: mdl-21561143

RESUMO

Methylation reactions of gaseous elementary mercury by halogen containing molecules such as halogenomethane species CH(3)X (with X = Cl, Br, and I) and the dimethylchlorinium ion CH(3)ClCH(3)(+) were investigated at the density functional level. With CH(3)X, the reaction is predicted to be almost athermic and kinetically demanding for a thermal reaction. The reaction can proceed photochemically in the visible range; therefore sunlight may increase the reaction rate. These results compare well with the experimental data. Consecutive methylation of the CH(3)HgX products (with X = Cl, Br, and I) and subsequent formation of CH(3)HgCH(3) were also studied. These reactions are predicted to be kinetically inaccessible and thermodynamically unfavorable. With CH(3)ClCH(3)(+), the reaction is predicted to be athermic but kinetically easy. This is due to the suitability of the methyl transfer reagent. Geometrical and electronic data were systematically analyzed in order to rationalize the results.


Assuntos
Gases/química , Hidrocarbonetos Halogenados/química , Mercúrio/química , Compostos de Metilmercúrio/síntese química , Cinética , Metilação , Compostos de Metilmercúrio/química , Modelos Químicos , Termodinâmica
12.
J Adv Model Earth Syst ; 13(8): e2020MS002391, 2021 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-34434492

RESUMO

Elevated concentrations of atmospheric bromine are known to cause ozone depletion in the Arctic, which is most frequently observed during springtime. We implement a detailed description of bromine and chlorine chemistry within the WRF-Chem 4.1.1 model, and two different descriptions of Arctic bromine activation: (1) heterogeneous chemistry on surface snow on sea ice, triggered by ozone deposition to snow (Toyota et al., 2011 https://doi.org/10.5194/acp-11-3949-2011), and (2) heterogeneous reactions on sea salt aerosols emitted through the sublimation of lofted blowing snow (Yang et al., 2008, https://doi.org/10.1029/2008gl034536). In both mechanisms, bromine activation is sustained by heterogeneous reactions on aerosols and surface snow. Simulations for spring 2012 covering the entire Arctic reproduce frequent and widespread ozone depletion events, and comparisons with observations of ozone show that these developments significantly improve model predictions during the Arctic spring. Simulations show that ozone depletion events can be initiated by both surface snow on sea ice, or by aerosols that originate from blowing snow. On a regional scale, in spring 2012, snow on sea ice dominates halogen activation and ozone depletion at the surface. During this period, blowing snow is a major source of Arctic sea salt aerosols but only triggers a few depletion events.

13.
Extremophiles ; 14(2): 205-12, 2010 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-20066448

RESUMO

16S rRNA gene (rrs) clone libraries were constructed from two snow samples (May 11, 2007 and June 7, 2007) and two meltwater samples collected during the spring of 2007 in Svalbard, Norway (79 degrees N). The libraries covered 19 different microbial classes, including Betaproteobacteria (21.3%), Sphingobacteria (16.4%), Flavobacteria (9.0%), Acidobacteria (7.7%) and Alphaproteobacteria (6.5%). Significant differences were detected between the two sets of sample libraries. First, the meltwater libraries had the highest community richness (Chao1: 103.2 and 152.2) and Shannon biodiversity indices (between 3.38 and 3.59), when compared with the snow libraries (Chao1: 14.8 and 59.7; Shannon index: 1.93 and 3.01). Second, integral-LIBSHUFF analyses determined that the bacterial communities in the snow libraries were significantly different from those of the meltwater libraries. Despite these differences, our data also support the theory that a common core group of microbial populations exist within a variety of cryohabitats. Electronic supplementary material The online version of this article (doi:10.1007/s00792-009-0299-2) contains supplementary material, which is available to authorized users.


Assuntos
Neve/microbiologia , Microbiologia da Água , Alphaproteobacteria/classificação , Alphaproteobacteria/genética , Alphaproteobacteria/isolamento & purificação , Bacteroidetes/classificação , Bacteroidetes/genética , Bacteroidetes/isolamento & purificação , Sequência de Bases , Betaproteobacteria/classificação , Betaproteobacteria/genética , Betaproteobacteria/isolamento & purificação , Biodiversidade , Clima Frio , Primers do DNA/genética , DNA Bacteriano/genética , DNA Bacteriano/isolamento & purificação , Ecossistema , Biblioteca Gênica , Noruega , Filogenia , RNA Ribossômico 16S/genética , RNA Ribossômico 16S/isolamento & purificação , Estações do Ano
14.
Sci Total Environ ; 741: 140200, 2020 Nov 01.
Artigo em Inglês | MEDLINE | ID: mdl-32599399

RESUMO

Concentrations of 9 organophosphate esters (OPEs), 16 perfluoroalkylated substances (PFASs) and 17 polycyclic aromatic hydrocarbons (PAHs) were investigated in surface snow samples collected at Dome C on the Antarctic Plateau in summer 2016. Tris(1-chloro-2-propyl) phosphate (TCPP), tris-(2-chloroethyl) phosphate (TCEP) and tri-n-butylphosphate (TnBP) were the dominant compounds of OPEs, with mean concentrations of 8157 ± 4860, 1128 ± 928 and 1232 ± 1147 pg/L. Perfluorooctanoic acid (PFOA, mean: 358 ± 71 pg/L) was the dominant compound of PFASs, and following by perfluoro-n-hexanoic acid (PFHxA, mean: 222 ± 97 pg/L), perfluoro-n-heptanoic acid (PFHpA, 183 ± 60 pg/L) and perfluoro-n-pentanoic acid (PFPeA, 175 ± 105 pg/L). 2-(Heptafluoropropoxy)propanoic acid (HFPO-DA, mean: 9.2 ± 2.6 pg/L) was determined in the Antarctic for the first time. Significantly positive correlations were observed between HFPO-DA and the short-chain PFASs, implying they have similar emission sources and long-range transport potential. High levels of 2-methylnaphthalene and 1-methylnaphthalene, as well as the ratios of PAH congeners indicated PAHs were attributable mostly to combustion origin. Occurrence and profiles of the indicators of OPEs, PFASs and PAHs, as well as air mass back-trajectory analysis provided direct evidences of human activities on Concordia station and posed obvious impacts on local environments in the Antarctic. Nevertheless, the exchange processes among different environmental matrices may drive the long-range transport and redistribution of the legacy and emerging Organic contaminants from coast to inland in the Antarctic.

15.
Sci Total Environ ; 716: 137129, 2020 May 10.
Artigo em Inglês | MEDLINE | ID: mdl-32044476

RESUMO

Microorganisms are ubiquitous in the atmosphere. Global investigations on the geographical and temporal distribution of airborne microbial communities are critical for identifying the sources and the factors shaping airborne communities. At mid-latitude sites, a seasonal shift in both the concentration and diversity of airborne microbial communities has been systematically observed in the planetary boundary layer. While the factors suspected of affecting this seasonal change were hypothesized (e.g., changes in the surface conditions, meteorological parameters and global air circulation), our understanding on how these factors influence the temporal variation of airborne microbial communities, especially at the microbial taxon level, remains limited. Here, we investigated the distribution of both airborne bacterial and fungal communities on a weekly basis over more than one year at the mid-latitude and continental site of puy de Dôme (France; +1465 m altitude above sea level). The seasonal shift in microbial community structure was likely correlated to the seasonal changes in the characteristics of puy de Dôme's landscape (croplands and natural vegetation). The airborne microbial taxa that were the most affected by seasonal changes trended differently throughout the seasons in relation with their trophic mode. In addition, the windy and variable local meteorological conditions found at puy de Dôme were likely responsible for the intraseasonal variability observed in the composition of airborne microbial communities.


Assuntos
Microbiologia do Ar , Microbiota , Atmosfera , França , Estações do Ano
16.
Sci Rep ; 10(1): 2389, 2020 Feb 06.
Artigo em Inglês | MEDLINE | ID: mdl-32024962

RESUMO

An amendment to this paper has been published and can be accessed via a link at the top of the paper.

17.
Front Microbiol ; 10: 2492, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31749784

RESUMO

The effect of nutrients on microbial interactions, including competition and collaboration, has mainly been studied in laboratories, but their potential application to complex ecosystems is unknown. Here, we examined the effect of changes in organic acids among other parameters on snow microbial communities in situ over 2 months. We compared snow bacterial communities from a low organic acid content period to that from a higher organic acid period. We hypothesized that an increase in organic acids would shift the dominant microbial interaction from collaboration to competition. To evaluate microbial interactions, we built taxonomic co-variance networks from OTUs obtained from 16S rRNA gene sequencing. In addition, we tracked marker genes of microbial cooperation (plasmid backbone genes) and competition (antibiotic resistance genes) across both sampling periods in metagenomes and metatranscriptomes. Our results showed a decrease in the average connectivity of the network during late spring compared to the early spring that we interpreted as a decrease of cooperation. This observation was strengthened by the significantly more abundant plasmid backbone genes in the metagenomes from the early spring. The modularity of the network from the late spring was also found to be higher than the one from the early spring, which is another possible indicator of increased competition. Antibiotic resistance genes were significantly more abundant in the late spring metagenomes. In addition, antibiotic resistance genes were also positively correlated to the organic acid concentration of the snow across both seasons. Snow organic acid content might be responsible for this change in bacterial interactions in the Arctic snow community.

18.
Sci Rep ; 9(1): 14441, 2019 10 08.
Artigo em Inglês | MEDLINE | ID: mdl-31595018

RESUMO

The atmosphere is an important route for transporting and disseminating microorganisms over short and long distances. Understanding how microorganisms are distributed in the atmosphere is critical due to their role in public health, meteorology and atmospheric chemistry. In order to determine the dominant processes that structure airborne microbial communities, we investigated the diversity and abundance of both bacteria and fungi from the PM10 particle size (particulate matter of 10 micrometers or less in diameter) as well as particulate matter chemistry and local meteorological characteristics over time at nine different meteorological stations around the world. The bacterial genera Bacillus and Sphingomonas as well as the fungal species Pseudotaeniolina globaosa and Cladophialophora proteae were the most abundant taxa of the dataset, although their relative abundances varied greatly based on sampling site. Bacterial and fungal concentration was the highest at the high-altitude and semi-arid plateau of Namco (China; 3.56 × 106 ± 3.01 × 106 cells/m3) and at the high-altitude and vegetated mountain peak Storm-Peak (Colorado, USA; 8.78 × 104 ± 6.49 × 104 cells/m3), respectively. Surrounding ecosystems, especially within a 50 km perimeter of our sampling stations, were the main contributors to the composition of airborne microbial communities. Temporal stability in the composition of airborne microbial communities was mainly explained by the diversity and evenness of the surrounding landscapes and the wind direction variability over time. Airborne microbial communities appear to be the result of large inputs from nearby sources with possible low and diluted inputs from distant sources.


Assuntos
Microbiologia do Ar , Vento , Bactérias/classificação , Bactérias/isolamento & purificação , Biodiversidade , Fungos/classificação , Fungos/isolamento & purificação , Filogeografia
19.
Front Microbiol ; 10: 243, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-30967843

RESUMO

The interplay between microbes and atmospheric physical and chemical conditions is an open field of research that can only be fully addressed using multidisciplinary approaches. The lack of coordinated efforts to gather data at representative temporal and spatial scales limits aerobiology to help understand large scale patterns of global microbial biodiversity and its causal relationships with the environmental context. This paper presents the sampling strategy and analytical protocols developed in order to integrate different fields of research such as microbiology, -omics biology, atmospheric chemistry, physics and meteorology to characterize atmospheric microbial life. These include control of chemical and microbial contaminations from sampling to analysis and identification of experimental procedures for characterizing airborne microbial biodiversity and its functioning from the atmospheric samples collected at remote sites from low cell density environments. We used high-volume sampling strategy to address both chemical and microbial composition of the atmosphere, because it can help overcome low aerosol and microbial cell concentrations. To account for contaminations, exposed and unexposed control filters were processed along with the samples. We present a method that allows for the extraction of chemical and biological data from the same quartz filters. We tested different sampling times, extraction kits and methods to optimize DNA yield from filters. Based on our results, we recommend supplementary sterilization steps to reduce filter contamination induced by handling and transport. These include manipulation under laminar flow hoods and UV sterilization. In terms of DNA extraction, we recommend a vortex step and a heating step to reduce binding to the quartz fibers of the filters. These steps have led to a 10-fold increase in DNA yield, allowing for downstream omics analysis of air samples. Based on our results, our method can be integrated into pre-existing long-term monitoring field protocols for the atmosphere both in terms of atmospheric chemistry and biology. We recommend using standardized air volumes and to develop standard operating protocols for field users to better control the operational quality.

20.
Sci Total Environ ; 397(1-3): 167-77, 2008 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-18396320

RESUMO

A field campaign was conducted in Ny-Alesund (78 degrees 54'N, 11 degrees 53'E), Svalbard (Norway) during April and May 2005. An Atmospheric Mercury (Hg) Depletion Event (AMDE) was observed from the morning of April 24 until the evening of April 27. Transport of already Hg and ozone (O3) depleted air masses could explain this observed depletion. Due to a snowfall event during the AMDE, surface snow Hg concentrations increased two fold. Hg deposition took place over a short period of time corresponding to 3-4 days. More than 80% of the deposited Hg was estimated to be reemitted back to the atmosphere in the days following the event. During the campaign, we observed night and day variations in surface snow Hg concentrations, which may be the result of gaseous elemental mercury (GEM) oxidation to divalent Hg at the snow/air interface by daylight surface snow chemistry. Finally, a decrease in the reactive Hg (HgR) fraction of total Hg (HgT) in the surface snow was observed during spring. We postulate that the transformation of HgR to a more stable form may occur in Arctic snow during spring.

SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa