Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 27
Filtrar
1.
Chemistry ; : e202400655, 2024 Jul 03.
Artigo em Inglês | MEDLINE | ID: mdl-38959118

RESUMO

A visible-light-induced cascade reaction is described for the one-pot synthesis of 6-hydroxyindoloquinazolinones using isatins (or isatins and isatoic anhydrides) and aliphatic carboxylic acids. The method provides 36 desired products in 33-96% yield, exhibiting broad substrate scope and good functional group tolerance. This approach utilizes inexpensive and commercially available starting materials, enabling the direct construction of high-value complex structures under mild conditions without the need for photocatalyst, showcasing significant applicability and environmental friendliness.

2.
J Org Chem ; 89(2): 1285-1295, 2024 Jan 19.
Artigo em Inglês | MEDLINE | ID: mdl-38163337

RESUMO

A novel photoredox-catalyzed direct hydroacylation of benzylidenemalononitriles is described. In this method, aroyl chlorides are employed as a readily available and affordable source of acyl groups, while commercially available tris(trimethylsilyl)silane acts as both the hydrogen atom donor and electron donor. By eliminating the requirement for complex synthesis of acyl precursors and hydrogen atom-transfer (HAT) reagents, this approach offers a convenient and efficient strategy for the hydroacylation of benzylidenemalononitriles.

3.
Environ Res ; 259: 119498, 2024 Jun 26.
Artigo em Inglês | MEDLINE | ID: mdl-38942254

RESUMO

Microplastics (MPs) can enter the reproductive system and can be potentially harmful to human reproductive health. In this study, 13 types of microplastics (MPs) were identified in patient blood, cancer samples, and paracarcinoma samples using Raman spectroscopy, with polyethylene, polypropylene and polyethylene-co-polypropylene being the most abundant polymer types. Futher, cotton was also found in our study. The diversity and abundance of MPs were higher in blood samples than in cancerous tissues, and there was a significant positive correlation between diversity (p < 0.05). Furthermore, the diversity and abundance of MPs in cancerous tissues were higher than in paracancerous tissues. The dimensional sizes of MPs in these samples were also very similar, with the majority of detected MPs being smaller in size. Correlation analysis showed that patient's age correlated with the abundance of MPs in blood samples, body mass index (BMI) correlated with the abundance of MPs in cancerous tissues. Notably, the frequency with which patients consume bottled water and beverages may also increase the abundance of MPs. This study identifies for the first time the presence of MPs and cotton in cancerous and paracancerous tissues of human cervical cancer patients. This provides new ideas and basic data to study the risk relationship between MP exposure and human health.

4.
Appl Opt ; 62(3): 528-535, 2023 Jan 20.
Artigo em Inglês | MEDLINE | ID: mdl-36821254

RESUMO

The thermal stress birefringence (TSB) is a big issue that destroys the sensing stability of the optical voltage transducer (OVT), and the existing research on the theoretical modeling and solution are not good enough to handle it. This paper presents a mathematical model of the TSB based on the photo-elastic effect, and then it is quantitatively calculated through the multiphysics coupling simulation. It shows that the asymmetric radial stresses in the electro-optic crystal are the root cause for the TSB, which results in a phase delay greater than 3.153°. On this basis, a method for TSB minimization to use the polyurethane buffer layer to enwrap around the crystal is proposed, which eliminates the random radial stress and improves the symmetry of stress distribution. Finally, the effectiveness of the proposed method is verified by simulation and experiment.

5.
Int J Mol Sci ; 24(13)2023 Jun 23.
Artigo em Inglês | MEDLINE | ID: mdl-37445737

RESUMO

There is currently no gene expression assay that can assess if premalignant lesions will develop into invasive breast cancer. This study sought to identify biomarkers for selecting patients with a high potential for developing invasive carcinoma in the breast with normal histology, benign lesions, or premalignant lesions. A set of 26-gene mRNA expression profiles were used to identify invasive ductal carcinomas from histologically normal tissue and benign lesions and to select those with a higher potential for future cancer development (ADHC) in the breast associated with atypical ductal hyperplasia (ADH). The expression-defined model achieved an overall accuracy of 94.05% (AUC = 0.96) in classifying invasive ductal carcinomas from histologically normal tissue and benign lesions (n = 185). This gene signature classified cancer development in ADH tissues with an overall accuracy of 100% (n = 8). The mRNA expression patterns of these 26 genes were validated using RT-PCR analyses of independent tissue samples (n = 77) and blood samples (n = 48). The protein expression of PBX2 and RAD52 assessed with immunohistochemistry were prognostic of breast cancer survival outcomes. This signature provided significant prognostic stratification in The Cancer Genome Atlas breast cancer patients (n = 1100), as well as basal-like and luminal A subtypes, and was associated with distinct immune infiltration and activities. The mRNA and protein expression of the 26 genes was associated with sensitivity or resistance to 18 NCCN-recommended drugs for treating breast cancer. Eleven genes had significant proliferative potential in CRISPR-Cas9/RNAi screening. Based on this gene expression signature, the VEGFR inhibitor ZM-306416 was discovered as a new drug for treating breast cancer.


Assuntos
Neoplasias da Mama , Carcinoma Ductal de Mama , Carcinoma Intraductal não Infiltrante , Humanos , Feminino , Neoplasias da Mama/diagnóstico , Neoplasias da Mama/tratamento farmacológico , Neoplasias da Mama/genética , Carcinoma Ductal de Mama/diagnóstico , Carcinoma Ductal de Mama/tratamento farmacológico , Carcinoma Ductal de Mama/genética , Seleção de Pacientes , Hiperplasia/patologia , Mama/metabolismo , Carcinoma Intraductal não Infiltrante/patologia , Desenvolvimento de Medicamentos , Proteínas Proto-Oncogênicas , Proteínas de Homeodomínio
6.
Int J Mol Sci ; 22(14)2021 Jul 17.
Artigo em Inglês | MEDLINE | ID: mdl-34299277

RESUMO

This study developed a novel methodology to correlate genome-scale microRNA (miRNA) expression profiles in a lung squamous cell carcinoma (LUSC) cohort (n = 57) with Surveillance, Epidemiology, and End Results (SEER)-Medicare LUSC patients (n = 33,897) as a function of composite tumor progression indicators of T, N, and M cancer stage and tumor grade. The selected prognostic and chemopredictive miRNAs were extensively validated with miRNA expression profiles of non-small-cell lung cancer (NSCLC) patient samples collected from US hospitals (n = 156) and public consortia including NCI-60, The Cancer Genome Atlas (TCGA; n = 1016), and Cancer Cell Line Encyclopedia (CCLE; n = 117). Hsa-miR-142-3p was associated with good prognosis and chemosensitivity in all the studied datasets. Hsa-miRNA-142-3p target genes (NUP205, RAN, CSE1L, SNRPD1, RPS11, SF3B1, COPA, ARCN1, and SNRNP200) had a significant impact on proliferation in 100% of the tested NSCLC cell lines in CRISPR-Cas9 (n = 78) and RNA interference (RNAi) screening (n = 92). Hsa-miR-142-3p-mediated pathways and functional networks in NSCLC short-term survivors were elucidated. Overall, the approach integrating SEER-Medicare data with comprehensive external validation can identify miRNAs with consistent expression patterns in tumor progression, with potential implications for prognosis and prediction of chemoresponse in large NSCLC patient populations.


Assuntos
Antineoplásicos/uso terapêutico , Carcinoma Pulmonar de Células não Pequenas/tratamento farmacológico , Carcinoma Pulmonar de Células não Pequenas/patologia , Neoplasias Pulmonares/tratamento farmacológico , Neoplasias Pulmonares/patologia , MicroRNAs/genética , Biomarcadores Tumorais/genética , Carcinoma Pulmonar de Células não Pequenas/epidemiologia , Carcinoma Pulmonar de Células não Pequenas/genética , Biologia Computacional/métodos , Bases de Dados Factuais , Bases de Dados Genéticas , Feminino , Humanos , Neoplasias Pulmonares/epidemiologia , Neoplasias Pulmonares/genética , Masculino , Medicare , Prognóstico , Programa de SEER , Taxa de Sobrevida , Estados Unidos/epidemiologia
7.
Int J Mol Sci ; 20(11)2019 May 29.
Artigo em Inglês | MEDLINE | ID: mdl-31146342

RESUMO

As the demand for multi-walled carbon nanotube (MWCNT) incorporation into industrial and biomedical applications increases, so does the potential for unintentional pulmonary MWCNT exposure, particularly among workers during manufacturing. Pulmonary exposure to MWCNTs raises the potential for development of lung inflammation, fibrosis, and cancer among those exposed; however, there are currently no effective biomarkers for detecting lung fibrosis or predicting the risk of lung cancer resulting from MWCNT exposure. To uncover potential mRNAs and miRNAs that could be used as markers of exposure, this study compared in vivo mRNA and miRNA expression in lung tissue and blood of mice exposed to MWCNTs with in vitro mRNA and miRNA expression from a co-culture model of human lung epithelial and microvascular cells, a system previously shown to have a higher overall genome-scale correlation with mRNA expression in mouse lungs than either cell type grown separately. Concordant mRNAs and miRNAs identified by this study could be used to drive future studies confirming human biomarkers of MWCNT exposure. These potential biomarkers could be used to assess overall worker health and predict the occurrence of MWCNT-induced diseases.


Assuntos
Pneumopatias/sangue , Pulmão/metabolismo , MicroRNAs/sangue , Nanotubos de Carbono/toxicidade , RNA Mensageiro/sangue , Animais , Biomarcadores/sangue , Biomarcadores/metabolismo , Linhagem Celular , Células Cultivadas , Humanos , Pulmão/efeitos dos fármacos , Pneumopatias/etiologia , Masculino , Camundongos , Camundongos Endogâmicos C57BL , MicroRNAs/genética , MicroRNAs/metabolismo , Exposição Ocupacional , RNA Mensageiro/genética , RNA Mensageiro/metabolismo
8.
Angew Chem Int Ed Engl ; 58(1): 118-124, 2019 01 02.
Artigo em Inglês | MEDLINE | ID: mdl-30421485

RESUMO

The combination of photoredox and enzymatic catalysis for the direct asymmetric one-pot synthesis of 2,2-disubstituted indol-3-ones from 2-arylindoles through concurrent oxidization and alkylation reactions is described. 2-Arylindoles can be photocatalytically oxidized to 2-arylindol-3-one with subsequent enantioselective alkylation with ketones catalyzed by wheat germ lipase (WGL). The chiral quaternary carbon center at C2 of the indoles was directly constructed. This mode of concurrent photobiocatalysis provides a mild and powerful strategy for one-pot enantioselective synthesis of complex compounds. The experiments proved that other lipases containing structurally analogous catalytic triad in the active site also can catalyze the reaction in the same way. This reaction is the first example of combining the non-natural catalytic activity of hydrolases with visible-light catalysis for enantioselective organic synthesis and it does not require any cofactors.


Assuntos
Técnicas de Química Sintética/métodos , Estereoisomerismo , Catálise , Humanos , Estrutura Molecular
9.
Int J Toxicol ; 37(4): 276-284, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-29916280

RESUMO

Respiratory exposure to multiwalled carbon nanotubes (MWCNT) or asbestos results in fibrosis; however, the mechanisms to reach this end point may be different. A previous study by our group identified pulmonary effects and significantly altered messenger RNA (mRNA) signaling pathways following exposure to 1, 10, 40, and 80 µg MWCNT and 120 µg crocidolite asbestos on mouse lungs over time at 1-month, 6-month, and 1-year postexposure following pulmonary aspiration. As a continuation to the above study, this current study took an in-depth look at the signaling pathways involved in fibrosis development at a single time point, 1 year, and exposure, 40 µg MWCNT, the lowest exposure at which fibrosis was pathologically evident. The 120 µg asbestos exposure was included to compare MWCNT-induced fibrosis with asbestos-induced fibrosis. A previously validated computational model was used to identify mRNAs with expression profiles matching the fibrosis pathology patterns from exposed mouse lungs. mRNAs that matched the pathology patterns were then input into ingenuity pathway analysis to determine potential signaling pathways and physiological disease functions inherent to MWCNT and asbestos exposure. Both MWCNT and asbestos exposure induced changes in mouse lungs regarding gene expression, cell proliferation, and survival, while MWCNT uniquely induced alterations in pathways involved in oxidative phosphorylation, mitochondrial dysfunction, and transcription. Asbestos exposure produced unique alterations in pathways involved in sustained inflammation. Although typically considered similar due to scale and fiber-like appearance, the different compositional properties inherent to either MWCNT or asbestos may play a role in their ability to induce fibrosis after pulmonary exposure.


Assuntos
Asbesto Crocidolita/toxicidade , Nanotubos de Carbono/toxicidade , Fibrose Pulmonar/induzido quimicamente , Administração por Inalação , Animais , Expressão Gênica/efeitos dos fármacos , Pulmão/efeitos dos fármacos , Pulmão/metabolismo , Pulmão/patologia , Camundongos , Fibrose Pulmonar/genética , Fibrose Pulmonar/patologia , RNA Mensageiro/metabolismo
10.
J Toxicol Environ Health A ; 79(8): 352-66, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-27092743

RESUMO

Pulmonary exposure to multiwalled carbon nanotubes (MWCNT) induces an inflammatory and rapid fibrotic response, although the long-term signaling mechanisms are unknown. The aim of this study was to examine the effects of 1, 10, 40, or 80 µg MWCNT administered by pharyngeal aspiration on bronchoalveolar lavage (BAL) fluid for polymorphonuclear cell (PMN) infiltration, lactate dehydrogenase (LDH) activity, and lung histopathology for inflammatory and fibrotic responses in mouse lungs 1 mo, 6 mo, and 1 yr postexposure. Further, a 120-µg crocidolite asbestos group was incorporated as a positive control for comparative purposes. Results showed that MWCNT increased BAL fluid LDH activity and PMN infiltration in a dose-dependent manner at all three postexposure times. Asbestos exposure elevated LDH activity at all 3 postexposure times and PMN infiltration at 1 mo and 6 mo postexposure. Pathological changes in the lung, the presence of MWCNT or asbestos, and fibrosis were noted at 40 and 80 µg MWCNT and in asbestos-exposed mice at 1 yr postexposure. To determine potential signaling pathways involved with MWCNT-associated pathological changes in comparison to asbestos, up- and down-regulated gene expression was determined in lung tissue at 1 yr postexposure. Exposure to MWCNT tended to favor those pathways involved in immune responses, specifically T-cell responses, whereas exposure to asbestos tended to favor pathways involved in oxygen species production, electron transport, and cancer. Data indicate that MWCNT are biopersistent in the lung and induce inflammatory and fibrotic pathological alterations similar to those of crocidolite asbestos, but may reach these endpoints by different mechanisms.


Assuntos
Poluentes Atmosféricos/toxicidade , Asbesto Crocidolita/toxicidade , Exposição por Inalação , Pulmão/efeitos dos fármacos , Pulmão/patologia , Nanotubos de Carbono/toxicidade , Animais , Líquido da Lavagem Broncoalveolar/química , Relação Dose-Resposta a Droga , Expressão Gênica/efeitos dos fármacos , Inflamação/induzido quimicamente , Inflamação/imunologia , Inflamação/patologia , L-Lactato Desidrogenase/genética , L-Lactato Desidrogenase/metabolismo , Pulmão/imunologia , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Infiltração de Neutrófilos/efeitos dos fármacos , Neutrófilos/efeitos dos fármacos , Neutrófilos/metabolismo , Fibrose Pulmonar/induzido quimicamente , Fibrose Pulmonar/imunologia , Fibrose Pulmonar/patologia , Fatores de Tempo
11.
J Appl Toxicol ; 36(1): 161-74, 2016 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-25926378

RESUMO

Inhalation exposure to multi-walled carbon nanotubes (MWCNT) in mice results in inflammation, fibrosis and the promotion of lung adenocarcinoma; however, the molecular basis behind these pathologies is unknown. This study determined global mRNA and miRNA profiles in whole blood from mice exposed by inhalation to MWCNT that correlated with the presence of lung hyperplasia, fibrosis, and bronchiolo-alveolar adenoma and adenocarcinoma. Six-week-old, male, B6C3F1 mice received a single intraperitoneal injection of either the DNA-damaging agent methylcholanthrene (MCA, 10 µg g(-1) body weight) or vehicle (corn oil). One week after injections, mice were exposed by inhalation to MWCNT (5 mg m(-3), 5 hours per day, 5 days per week) or filtered air (control) for a total of 15 days. At 17 months post-exposure, mice were euthanized and examined for the development of pathological changes in the lung, and whole blood was collected and analyzed using microarray analysis for global mRNA and miRNA expression. Numerous mRNAs and miRNAs in the blood were significantly up- or down-regulated in animals developing pathological changes in the lung after MCA/corn oil administration followed by MWCNT/air inhalation, including fcrl5 and miR-122-5p in the presence of hyperplasia, mthfd2 and miR-206-3p in the presence of fibrosis, fam178a and miR-130a-3p in the presence of bronchiolo-alveolar adenoma, and il7r and miR-210-3p in the presence of bronchiolo-alveolar adenocarcinoma, among others. The changes in miRNA and mRNA expression, and their respective regulatory networks, identified in this study may potentially serve as blood biomarkers for MWCNT-induced lung pathological changes.


Assuntos
Adenocarcinoma/genética , Adenoma/genética , Neoplasias Pulmonares/genética , Pulmão/patologia , MicroRNAs/sangue , Nanotubos de Carbono/toxicidade , Fibrose Pulmonar/genética , RNA Mensageiro/sangue , Adenocarcinoma/etiologia , Adenocarcinoma de Pulmão , Animais , Redes Reguladoras de Genes , Hiperplasia , Exposição por Inalação , Neoplasias Pulmonares/etiologia , Masculino , Camundongos
12.
Cell Physiol Biochem ; 35(3): 1116-24, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-25766524

RESUMO

BACKGROUND: SIRT1, which belongs to the Sirtuin family of NAD-dependent enzymes, plays diverse roles in aging, metabolism, and disease biology. It could regulate cell survival and has been shown to be a protective factor in heart function. Hence, we verified the mechanism by which SIRT1 regulates doxorubicin induced cardiomyocyte injury in vivo and in vitro. METHODS: We analyzed SIRT1 expression in doxorubicin-induced neonatal rat cardiomyocyte injury model and adult mouse heart failure model. SIRT1 was over-expressed in cultured neonatal rat cardiomyocyte by adenovirus mediated gene transfer. SIRT1 agonist resveratrol was used to treat the doxorubicin-induced heart failure mouse model. Echocardiography, reactive oxygen species (ROS) production, TUNEL, qRT-PCR, and Western blotting were performed to analyze cell survival, oxidative stress, and inflammatory signal pathways in cardiomyocytes. RESULTS: SIRT1 expression was down-regulated in doxorubicin induced cardiomocyte injury, accompanied by elevated oxidative stress and cell apoptosis. SIRT1 over-expression reduced doxorubicin induced cardiomyocyte apoptosis with the attenuated ROS production. SIRT1 also reduced cell apoptosis by inhibition of p38MAPK phosphorylation and caspase-3 activation. The SIRT1 agonist resveratrol was able to prevent doxorubicin-induced heart function loss. Moreover, the SIRT1 inhibitor niacinamide could reverse SIRT1's protective effect in cultured neonatal rat cardiomyocytes. CONCLUSIONS: These results support the role of SIRT1 as an important regulator of cardiomyocyte apoptosis during doxorubicin-induced heart injury, which may represent a potential therapeutic target for doxorubicin-induced cardiomyopathy.


Assuntos
Insuficiência Cardíaca/genética , Miócitos Cardíacos/metabolismo , Sirtuína 1/biossíntese , Proteínas Quinases p38 Ativadas por Mitógeno/biossíntese , Animais , Apoptose/efeitos dos fármacos , Linhagem Celular , Doxorrubicina/efeitos adversos , Regulação da Expressão Gênica/genética , Insuficiência Cardíaca/induzido quimicamente , Insuficiência Cardíaca/patologia , Humanos , Camundongos , Miócitos Cardíacos/efeitos dos fármacos , Miócitos Cardíacos/patologia , Niacinamida/administração & dosagem , Estresse Oxidativo/efeitos dos fármacos , Ratos , Resveratrol , Transdução de Sinais/efeitos dos fármacos , Estilbenos/administração & dosagem
13.
Environ Technol ; : 1-18, 2023 Dec 29.
Artigo em Inglês | MEDLINE | ID: mdl-38158762

RESUMO

Carbon nanotubes supported cobalt nickel sulphide nanoparticles (nano-NiCo2S4@CNTs) were successfully prepared by a hydrothermal method as heterogeneous catalyst which can be used as an activator of peroxymonosulphate (PMS) for the degradation of chloroquine phosphate (CQP). Based on characterisation techniques, the prepared catalyst has excellent surface properties and structural stability. When different concentrations of CQP were treated with 0.2 g/L nano-NiCo2S4@CNTs and 1.0 mM PMS, the highest degradation rate could reach 99.86% after 30 min. Under the interference of pH, common anions and humic acid in the water environment, the reaction system can still achieve high degradation efficiency, showing excellent anti-interference ability and practical applicability. Furthermore, in the nano-NiCo2S4@CNTs/PMS system, according to the identification results of reactive oxygen species, the free radical and non-free radical pathway are responsible for the degradation of CQP, and the PMS mechanism activation was comprehensively proposed. Twelve intermediate products were detected in the degradation process, and the possible degradation pathways of CQP were proposed. This toxicity analysis demonstrates that the intermediate products formed during CQP degradation pose lower environmental risks compared to the original pollutant. In addition, after using the catalyst four cycles, the removal efficiency of CQP remains above 80%, indicating the excellent reusability and low metal ion leaching characteristics. Therefore, the nano-NiCo2S4@CNTs synthesised in this research has broad application prospects in activating PMS for wastewater treatment.

14.
Cells ; 12(14)2023 07 23.
Artigo em Inglês | MEDLINE | ID: mdl-37508580

RESUMO

Breast cancer treatment can be improved with biomarkers for early detection and individualized therapy. A set of 86 microRNAs (miRNAs) were identified to separate breast cancer tumors from normal breast tissues (n = 52) with an overall accuracy of 90.4%. Six miRNAs had concordant expression in both tumors and breast cancer patient blood samples compared with the normal control samples. Twelve miRNAs showed concordant expression in tumors vs. normal breast tissues and patient survival (n = 1093), with seven as potential tumor suppressors and five as potential oncomiRs. From experimentally validated target genes of these 86 miRNAs, pan-sensitive and pan-resistant genes with concordant mRNA and protein expression associated with in-vitro drug response to 19 NCCN-recommended breast cancer drugs were selected. Combined with in-vitro proliferation assays using CRISPR-Cas9/RNAi and patient survival analysis, MEK inhibitors PD19830 and BRD-K12244279, pilocarpine, and tremorine were discovered as potential new drug options for treating breast cancer. Multi-omics biomarkers of response to the discovered drugs were identified using human breast cancer cell lines. This study presented an artificial intelligence pipeline of miRNA-based discovery of biomarkers, therapeutic targets, and repositioning drugs that can be applied to many cancer types.


Assuntos
Neoplasias da Mama , Neoplasias Mamárias Animais , MicroRNAs , Humanos , Animais , Feminino , MicroRNAs/metabolismo , Neoplasias da Mama/tratamento farmacológico , Neoplasias da Mama/genética , Neoplasias da Mama/patologia , Reposicionamento de Medicamentos , Inteligência Artificial , Biomarcadores , Neoplasias Mamárias Animais/tratamento farmacológico
15.
Cell Death Dis ; 14(10): 696, 2023 10 24.
Artigo em Inglês | MEDLINE | ID: mdl-37875515

RESUMO

As a common malignant tumor among women, ovarian cancer poses a serious threat to their health. This study demonstrates that long non-coding RNA NRSN2-AS1 is over-expressed in ovarian cancer tissues using patient sample and tissue microarrays. In addition, NRSN2-AS1 is shown to promote ovarian cancer cell proliferation and metastasis both in vitro and in vivo. Mechanistically, NRSN2-AS1 stabilizes protein tyrosine kinase 2 (PTK2) to activate the ß-catenin pathway via repressing MG-53-mediated ubiquitinated degradation of PTK2, thereby facilitating ovarian cancer progression. Rescue experiments verify the function of the NRSN2-AS1/PTK2/ß-catenin axis and the effects of MG53 on this axis in ovarian cancer cells. In conclusion, this study demonstrates the key role of the NRSN2-AS1/PTK2/ß-catenin axis for the first time and explores its potential clinical applications in ovarian cancer.


Assuntos
Neoplasias Ovarianas , RNA Longo não Codificante , Humanos , Feminino , Neoplasias Ovarianas/genética , Neoplasias Ovarianas/patologia , RNA Longo não Codificante/genética , RNA Longo não Codificante/metabolismo , Cateninas/metabolismo , beta Catenina/genética , beta Catenina/metabolismo , Proliferação de Células/genética , Linhagem Celular Tumoral , Regulação Neoplásica da Expressão Gênica , Via de Sinalização Wnt/genética , Movimento Celular/genética , Quinase 1 de Adesão Focal/metabolismo
16.
Front Med (Lausanne) ; 8: 682368, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34249974

RESUMO

Background: Cesarean scar pregnancy (CSP) involves a rare form of placental attachment that often leads to life-threatening conditions. The best treatment for CSP has been debated for decades. We aimed to evaluate the different treatments for CSP and analyzed the risk factors for intraoperative hemorrhage. Methods: CSP patients treated at the Affiliated Hospital of Jiangnan University were reviewed retrospectively from January 2014 to 2020. CSP was classified into three types based on the location and shape of gestational tissue, blood flow features, and thickness of the myometrium at the incision site. The clinical characteristics, types, approaches of treatment, and clinical outcomes of CSP were analyzed. Results: A total of 55 patients were included in this study, 29 (52.7%) of whom underwent transvaginal curettage after uterine artery embolization (UAE) and 22 (40%) of whom underwent transabdominal ultrasound-guided hysteroscopic curettage (USHC) in type I and II. Four patients (7.3%) classified as type III underwent laparoscopic cesarean scar resection (LCSR). Intraoperative blood loss, blood transfusion rate, and scar diverticulum were significantly higher in type II than in type I (P < 0.05). Even though USHC showed no differences in intraoperative blood loss, length of stay, and scar diverticulum compared with curettage after UAE (P > 0.05), superiority was found in surgical time and hospitalization cost (P < 0.05). Furthermore, the type of CSP (OR = 10.53, 95% CI: 1.69-65.57; P = 0.012) and diameter of the gestational sac (OR = 25.76, 95% CI: 2.67-248.20; P = 0.005) were found to be risk factors for intraoperative hemorrhage. Conclusions: Transabdominal ultrasound-guided hysteroscopic curettage is an effective and relatively safe treatment option for patients with CSP. Type of CSP and diameter of the gestational sac were found to be associated with excessive intraoperative hemorrhage.

17.
Materials (Basel) ; 14(11)2021 Jun 01.
Artigo em Inglês | MEDLINE | ID: mdl-34206046

RESUMO

Effects of scanning strategy during powder bed fusion electron beam additive manufacturing (PBF-EB AM) on microstructure, nano-mechanical properties, and creep behavior of Ti6Al4V alloys were compared. Results show that PBF-EB AM Ti6Al4V alloy with linear scanning without rotation strategy was composed of 96.9% α-Ti and 2.7% ß-Ti, and has a nanoindentation range of 4.11-6.31 GPa with the strain rate ranging from 0.001 to 1 s-1, and possesses a strain-rate sensitivity exponent of 0.053 ± 0.014. While PBF-EB AM Ti6Al4V alloy with linear and 90° rotate scanning strategy was composed of 98.1% α-Ti and 1.9% ß-Ti and has a nanoindentation range of 3.98-5.52 GPa with the strain rate ranging from 0.001 to 1 s-1, and possesses a strain-rate sensitivity exponent of 0.047 ± 0.009. The nanohardness increased with increasing strain rate, and creep displacement increased with the increasing maximum holding loads. The creep behavior was mainly dominated by dislocation motion during deformation induced by the indenter. The PBF-EB AM Ti6Al4V alloy with only the linear scanning strategy has a higher nanohardness and better creep resistance properties than the alloy with linear scanning and 90° rotation strategy. These results could contribute to understanding the creep behavior of Ti6Al4V alloy and are significant for PBF-EB AM of Ti6Al4V and other alloys.

18.
Org Lett ; 22(3): 1076-1080, 2020 02 07.
Artigo em Inglês | MEDLINE | ID: mdl-31975600

RESUMO

A mild and effective method for asymmetric synthesis of C2-quaternary indolin-3-ones directly from 2-arylindoles by combining visible light photocatalysis and organocatalysis is described. In this reaction, 2-substituted indoles undergo photocatalyzed oxidative dearomatization, followed by an organocatalyzed asymmetric Mannich reaction with ketones or aldehydes. Products with opposite configurations are easily obtained in satisfactory yields with excellent enantio- and diastereoselectivity by employing readily available l- and d-proline as chiral organocatalysts.


Assuntos
Indóis/química , Luz , Prolina/química , Catálise , Estrutura Molecular , Oxirredução , Processos Fotoquímicos , Estereoisomerismo
19.
Front Genet ; 10: 967, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31681416

RESUMO

MicroRNAs (miRNAs) are the major class of gene-regulating molecules that bind mRNAs. They function mainly as translational repressors in mammals. Therefore, how to identify miRNAs is one of the most important problems in medical treatment. Many known pre-miRNAs have a hairpin ring structure containing more structural features, and it is difficult to identify mature miRNAs because of their short length. Therefore, most research focuses on the identification of pre-miRNAs. Most computational models rely on manual feature extraction to identify pre-miRNAs and do not consider the sequential and spatial characteristics of pre-miRNAs, resulting in a loss of information. As the number of unidentified pre-miRNAs is far greater than that of known pre-miRNAs, there is a dataset imbalance problem, which leads to a degradation of the performance of pre-miRNA identification methods. In order to overcome the limitations of existing methods, we propose a pre-miRNA identification algorithm based on a cascaded CNN-LSTM framework, called CL-PMI. We used a convolutional neural network to automatically extract features and obtain pre-miRNA spatial information. We also employed long short-term memory (LSTM) to capture time characteristics of pre-miRNAs and improve attention mechanisms for long-term dependence modeling. Focal loss was used to improve the dataset imbalance. Compared with existing methods, CL-PMI achieved better performance on all datasets. The results demonstrate that this method can effectively identify pre-miRNAs by simultaneously considering their spatial and sequential information, as well as dealing with imbalance in the datasets.

20.
Front Pharmacol ; 10: 1592, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-32047432

RESUMO

Drug targets are biomacromolecules or biomolecular structures that bind to specific drugs and produce therapeutic effects. Therefore, the prediction of drug-target interactions (DTIs) is important for disease therapy. Incorporating multiple similarity measures for drugs and targets is of essence for improving the accuracy of prediction of DTIs. However, existing studies with multiple similarity measures ignored the global structure information of similarity measures, and required manual extraction features of drug-target pairs, ignoring the non-linear relationship among features. In this paper, we proposed a novel approach MDADTI for DTIs prediction based on MDA. MDADTI applied random walk with restart method and positive pointwise mutual information to calculate the topological similarity matrices of drugs and targets, capturing the global structure information of similarity measures. Then, MDADTI applied multimodal deep autoencoder to fuse multiple topological similarity matrices of drugs and targets, automatically learned the low-dimensional features of drugs and targets, and applied deep neural network to predict DTIs. The results of 5-repeats of 10-fold cross-validation under three different cross-validation settings indicated that MDADTI is superior to the other four baseline methods. In addition, we validated the predictions of the MDADTI in six drug-target interactions reference databases, and the results showed that MDADTI can effectively identify unknown DTIs.

SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa