Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
Intervalo de ano de publicação
1.
IUBMB Life ; 73(2): 432-443, 2021 02.
Artigo em Inglês | MEDLINE | ID: mdl-33336851

RESUMO

Postmenopausal osteoporosis (PMOP) is mainly caused by multiple factors. Recent studies have suggested that iron accumulation (IA) was closely related to PMOP. However, the detailed molecular mechanisms have not been well demonstrated. We constructed the IA mouse model by intraperitoneal injections of ferric ammonium citrate (FAC) and cell model by culturing with the medium containing FAC. Osteoporosis was confirmed in mouse bone tissues using H&E staining, and the level of serum ferritin, alkaline phosphatase (ALP), procollagen-1 N-terminal peptide (P1NP), and osteocalcin in mice was examined by ELISA. The expressions of XIST and miR-758-3p were detected by qRT-PCR. Cell proliferation and apoptosis were measured by CCK-8, TUNEL, and flow cytometry. The expression levels of apoptotic-related proteins were evaluated by western blot. Dual luciferase reporter assay was used to examine the molecular interaction. The expressions of ALP, P1NP, and osteocalcin, and the H&E staining of bone tissues in mice were analyzed to confirm the biological function of XIST and miR-758-3p in vivo. XIST was up-regulated while miR-758-3p was down-regulated in IA mouse and cell models. XIST knockdown significantly reduced FAC-induced osteoblast apoptosis, which was mimicked by transfection with miR-758-3p mimics. XIST acted as a sponge of miR-758-3p, which targeted caspase 3. IA led to the high expression of XIST and promoted osteoblast apoptosis through miR-758-3p/caspase 3. Transfection with shXIST or miR-758-3p mimics alleviated IA-induced mouse osteoporosis. IA regulated osteoblast apoptosis through XIST/miR-758-3p/caspase 3 axis, which might provide alternative targets for the treatment of osteoporosis.


Assuntos
Caspase 3/metabolismo , Regulação da Expressão Gênica , Ferro/metabolismo , MicroRNAs/genética , Osteoblastos/patologia , Osteoporose/patologia , RNA Longo não Codificante/genética , Animais , Apoptose , Caspase 3/genética , Movimento Celular , Proliferação de Células , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Osteoblastos/metabolismo , Osteoporose/etiologia , Osteoporose/metabolismo
2.
Tissue Cell ; 64: 101339, 2020 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-32473705

RESUMO

Deltex-3-like (DTX3L), an E3 ligase, which is also known as B-lymphoma and BAL-associated protein (BBAP), is a member of the Deltex (DTX) family and was originally identified as a binding partner of diphtheria-toxin-like ADP-ribosyltransferase-9 (ARTD9). The present study found that DTX3L and ARTD9 were upregulated in synovial tissues obtained from rheumatoid arthritis (RA) patients compared with those from the controls. Healthy synovial tissues were obtained by arthroscopic biopsy from patients with meniscus injury (n = 10 samples) without a history of RA in the Orthopedic Department of the Affiliated Hospital of Nantong University. FLSs were isolated from RA patients who underwent total knee arthroplasty. We performed dual immunofluorescence staining on DTX3L and ARTD9, and these data strongly demonstrated that DTX3L and ARTD9 were colocalized with fibroblast-like synoviocytes (FLSs) in patients with RA. Furthermore, Western blot assays were performed to confirm that the expression levels of DTX3L and ARTD9 in the FLSs increased in a time-dependent manner and peaked at 24 h after TNF-α stimulation. Further, the inhibition of endogenous DTX3L and ARTD9 expression by RNA interference significantly suppressed the TNF-α-induced MMP-9 and IL-6 expression, as shown by Western blots. In contrast, overexpressing DTX3L and ARTD9 increased the MMP-9 and IL-6 mRNA levels in the TNF-α-stimulated FLSs. Moreover, DTX3L and ARTD9 associated with STAT1 under TNF-α-stimulated conditions to modulate STAT1 nuclear localization and transcriptional activity in an immunofluorescence staining assay. Collectively, our findings provide evidence that DTX3L and ARTD9 contribute to the production of inflammatory cytokines in FLSs from RA patients and may play a key role in the inflammatory process of RA via the STAT1 signal transduction pathway.


Assuntos
Artrite Reumatoide/metabolismo , Fator de Transcrição STAT1/metabolismo , Sinoviócitos/metabolismo , Ubiquitina-Proteína Ligases/metabolismo , Citocinas/metabolismo , Feminino , Humanos , Inflamação/patologia , Masculino , Poli(ADP-Ribose) Polimerases/metabolismo , Transdução de Sinais , Membrana Sinovial/citologia
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa