RESUMO
The human immunodeficiency virus (HIV)-1 protein Vif has a central role in the neutralization of host innate defences by hijacking cellular proteasomal degradation pathways to subvert the antiviral activity of host restriction factors; however, the underlying mechanism by which Vif achieves this remains unclear. Here we report a crystal structure of the Vif-CBF-ß-CUL5-ELOB-ELOC complex. The structure reveals that Vif, by means of two domains, organizes formation of the pentameric complex by interacting with CBF-ß, CUL5 and ELOC. The larger domain (α/ß domain) of Vif binds to the same side of CBF-ß as RUNX1, indicating that Vif and RUNX1 are exclusive for CBF-ß binding. Interactions of the smaller domain (α-domain) of Vif with ELOC and CUL5 are cooperative and mimic those of SOCS2 with the latter two proteins. A unique zinc-finger motif of Vif, which is located between the two Vif domains, makes no contacts with the other proteins but stabilizes the conformation of the α-domain, which may be important for Vif-CUL5 interaction. Together, our data reveal the structural basis for Vif hijacking of the CBF-ß and CUL5 E3 ligase complex, laying a foundation for rational design of novel anti-HIV drugs.
Assuntos
Subunidade beta de Fator de Ligação ao Core/química , Subunidade beta de Fator de Ligação ao Core/metabolismo , Proteínas Culina/química , Proteínas Culina/metabolismo , Produtos do Gene vif do Vírus da Imunodeficiência Humana/química , Produtos do Gene vif do Vírus da Imunodeficiência Humana/metabolismo , Sequência de Aminoácidos , Subunidade alfa 2 de Fator de Ligação ao Core/metabolismo , Cristalografia por Raios X , Elonguina , Humanos , Modelos Moleculares , Dados de Sequência Molecular , Complexos Multiproteicos/química , Complexos Multiproteicos/metabolismo , Ligação Proteica , Estabilidade Proteica , Estrutura Terciária de Proteína , Proteínas Supressoras da Sinalização de Citocina , Fatores de Transcrição/química , Fatores de Transcrição/metabolismoRESUMO
Phages use anti-CRISPR proteins to deactivate the CRISPR-Cas system. The mechanisms for the inhibition of type I and type II systems by anti-CRISPRs have been elucidated. However, it has remained unknown how the type V CRISPR-Cas12a (Cpf1) system is inhibited by anti-CRISPRs. Here we identify the anti-CRISPR protein AcrVA5 and report the mechanisms by which it inhibits CRISPR-Cas12a. Our structural and biochemical data show that AcrVA5 functions as an acetyltransferase to modify Moraxella bovoculi (Mb) Cas12a at Lys635, a residue that is required for recognition of the protospacer-adjacent motif. The AcrVA5-mediated modification of MbCas12a results in complete loss of double-stranded DNA (dsDNA)-cleavage activity. In contrast, the Lys635Arg mutation renders MbCas12a completely insensitive to inhibition by AcrVA5. A cryo-EM structure of the AcrVA5-acetylated MbCas12a reveals that Lys635 acetylation provides sufficient steric hindrance to prevent dsDNA substrates from binding to the Cas protein. Our study reveals an unprecedented mechanism of CRISPR-Cas inhibition and suggests an evolutionary arms race between phages and bacteria.