Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 61
Filtrar
1.
Brief Bioinform ; 22(5)2021 09 02.
Artigo em Inglês | MEDLINE | ID: mdl-33885735

RESUMO

The 2019 novel coronavirus (SARS-CoV-2) has spread rapidly worldwide and was declared a pandemic by the WHO in March 2020. The evolution of SARS-CoV-2, either in its natural reservoir or in the human population, is still unclear, but this knowledge is essential for effective prevention and control. We propose a new framework to systematically identify recombination events, excluding those due to noise and convergent evolution. We found that several recombination events occurred for SARS-CoV-2 before its transfer to humans, including a more recent recombination event in the receptor-binding domain. We also constructed a probabilistic mutation network to explore the diversity and evolution of SARS-CoV-2 after human infection. Clustering results show that the novel coronavirus has diverged into several clusters that cocirculate over time in various regions and that several mutations across the genome are fixed during transmission throughout the human population, including D614G in the S gene and two accompanied mutations in ORF1ab. Together, these findings suggest that SARS-CoV-2 experienced a complicated evolution process in the natural environment and point to its continuous adaptation to humans. The new framework proposed in this study can help our understanding of and response to other emerging pathogens.


Assuntos
Evolução Molecular , Recombinação Genética , SARS-CoV-2/genética , COVID-19/virologia , Humanos , Filogenia , Reprodutibilidade dos Testes
2.
Cardiovasc Drugs Ther ; 36(1): 121-129, 2022 02.
Artigo em Inglês | MEDLINE | ID: mdl-33411110

RESUMO

PURPOSE: Rivaroxaban, an oral anticoagulant, undergoes the metabolism mediated by human cytochrome P450 (CYP). The present study is to quantitatively analyze and compare the contributions of multiple CYPs in the metabolism of rivaroxaban to provide new information for medication safety. METHODS: The metabolic stability of rivaroxaban in the presence of human liver microsomes (HLMs) and recombinant CYPs was systematically evaluated to estimate the participation of various CYP isoforms. Furthermore, the catalytic efficiency of CYP isoforms was compared via metabolic kinetic studies of rivaroxaban with recombinant CYP isoenzymes, as well as via CYP-specific inhibitory studies. Additionally, docking simulations were used to illustrate molecular interactions. RESULTS: Multiple CYP isoforms were involved in the hydroxylation of rivaroxaban, with decreasing catalytic rates as follows: CYP2J2 > 3A4 > 2D6 > 4F3 > 1A1 > 3A5 > 3A7 > 2A6 > 2E1 > 2C9 > 2C19. Among the CYPs, 2J2, 3A4, 2D6, and 4F3 were the four major isoforms responsible for rivaroxaban metabolism. Notably, the intrinsic clearance of rivaroxaban catalyzed by CYP2J2 was nearly 39-, 64-, and 100-fold that catalyzed by CYP3A4, 2D6, and 4F3, respectively. In addition, rivaroxaban hydroxylation was inhibited by 41.1% in the presence of the CYP2J2-specific inhibitor danazol, which was comparable to the inhibition rate of 43.3% by the CYP3A-specific inhibitor ketoconazole in mixed HLMs. Furthermore, molecular simulations showed that rivaroxaban is principally bound to CYP2J2 by π-alkyl bonds, carbon-hydrogen bonds, and alkyl interactions. CONCLUSION: CYP2J2 dominated the hydroxylation of rivaroxaban, which may provide new insight into clinical drug interactions involving rivaroxaban.


Assuntos
Citocromo P-450 CYP2J2/metabolismo , Inibidores do Fator Xa/farmacocinética , Microssomos Hepáticos/metabolismo , Rivaroxabana/farmacocinética , Inibidores das Enzimas do Citocromo P-450/farmacologia , Sistema Enzimático do Citocromo P-450/metabolismo , Danazol/farmacologia , Interações Medicamentosas , Humanos , Isoenzimas , Microssomos Hepáticos/enzimologia , Simulação de Acoplamento Molecular
3.
J Med Internet Res ; 22(11): e23853, 2020 11 11.
Artigo em Inglês | MEDLINE | ID: mdl-33098287

RESUMO

BACKGROUND: The novel COVID-19 disease has spread worldwide, resulting in a new pandemic. The Chinese government implemented strong intervention measures in the early stage of the epidemic, including strict travel bans and social distancing policies. Prioritizing the analysis of different contributing factors to outbreak outcomes is important for the precise prevention and control of infectious diseases. We proposed a novel framework for resolving this issue and applied it to data from China. OBJECTIVE: This study aimed to systematically identify national-level and city-level contributing factors to the control of COVID-19 in China. METHODS: Daily COVID-19 case data and related multidimensional data, including travel-related, medical, socioeconomic, environmental, and influenza-like illness factors, from 343 cities in China were collected. A correlation analysis and interpretable machine learning algorithm were used to evaluate the quantitative contribution of factors to new cases and COVID-19 growth rates during the epidemic period (ie, January 17 to February 29, 2020). RESULTS: Many factors correlated with the spread of COVID-19 in China. Travel-related population movement was the main contributing factor for new cases and COVID-19 growth rates in China, and its contributions were as high as 77% and 41%, respectively. There was a clear lag effect for travel-related factors (previous vs current week: new cases, 45% vs 32%; COVID-19 growth rates, 21% vs 20%). Travel from non-Wuhan regions was the single factor with the most significant impact on COVID-19 growth rates (contribution: new cases, 12%; COVID-19 growth rate, 26%), and its contribution could not be ignored. City flow, a measure of outbreak control strength, contributed 16% and 7% to new cases and COVID-19 growth rates, respectively. Socioeconomic factors also played important roles in COVID-19 growth rates in China (contribution, 28%). Other factors, including medical, environmental, and influenza-like illness factors, also contributed to new cases and COVID-19 growth rates in China. Based on our analysis of individual cities, compared to Beijing, population flow from Wuhan and internal flow within Wenzhou were driving factors for increasing the number of new cases in Wenzhou. For Chongqing, the main contributing factor for new cases was population flow from Hubei, beyond Wuhan. The high COVID-19 growth rates in Wenzhou were driven by population-related factors. CONCLUSIONS: Many factors contributed to the COVID-19 outbreak outcomes in China. The differential effects of various factors, including specific city-level factors, emphasize the importance of precise, targeted strategies for controlling the COVID-19 outbreak and future infectious disease outbreaks.


Assuntos
COVID-19/epidemiologia , Surtos de Doenças/estatística & dados numéricos , China/epidemiologia , Análise Fatorial , Humanos
4.
J Am Chem Soc ; 141(2): 1126-1134, 2019 01 16.
Artigo em Inglês | MEDLINE | ID: mdl-30525564

RESUMO

Cytochrome P450 2J2 (CYP2J2), a key enzyme responsible for oxidative metabolism of various xenobiotics and endogenous compounds, participates in a diverse array of physiological and pathological processes in humans. Its biological role in tumorigenesis and cancer diagnosis remains poorly understood, owing to the lack of molecular tools suitable for real-time monitoring CYP2J2 in complex biological systems. Using molecular design principles, we were able to modify the distance between the catalytic unit and metabolic recognition moiety, allowing us to develop a CYP2J2 selective fluorescent probe using a near-infrared fluorophore ( E)-2-(2-(6-hydroxy-2, 3-dihydro-1 H-xanthen-4-yl)vinyl)-3,3-dimethyl-1-propyl-3 H-indol-1-ium iodide (HXPI). To improve the reactivity and isoform specificity, a self-immolative linker was introduced to the HXPI derivatives in order to better fit the narrow substrate channel of CYP2J2, the modification effectively shortened the spatial distance between the metabolic moiety ( O-alkyl group) and catalytic center of CYP2J2. After screening a panel of O-alkylated HXPI derivatives, BnXPI displayed the best combination of specificity, sensitivity and applicability for detecting CYP2J2 in vitro and in vivo. Upon O-demethylation by CYP2J2, a self-immolative reaction occurred spontaneously via 1,6-elimination of p-hydroxybenzyl resulting in the release of HXPI. Allowing BnXPI to be successfully used to monitor CYP2J2 activity in real-time for various living systems including cells, tumor tissues, and tumor-bearing animals. In summary, our practical strategy could help the development of a highly specific and broadly applicable tool for monitoring CYP2J2, which offers great promise for exploring the biological functions of CYP2J2 in tumorigenesis.


Assuntos
Sistema Enzimático do Citocromo P-450/análise , Corantes Fluorescentes/química , Xantenos/química , Animais , Linhagem Celular Tumoral , Citocromo P-450 CYP2J2 , Sistema Enzimático do Citocromo P-450/química , Sistema Enzimático do Citocromo P-450/metabolismo , Corantes Fluorescentes/síntese química , Corantes Fluorescentes/metabolismo , Humanos , Leucemia/diagnóstico por imagem , Linfoma/diagnóstico por imagem , Camundongos Nus , Microscopia Confocal/métodos , Microscopia de Fluorescência/métodos , Microssomos Hepáticos/metabolismo , Simulação de Acoplamento Molecular , Neovascularização Patológica/diagnóstico por imagem , Ligação Proteica , Xantenos/síntese química , Xantenos/metabolismo
6.
Bioorg Chem ; 81: 350-355, 2018 12.
Artigo em Inglês | MEDLINE | ID: mdl-30193143

RESUMO

Eighteen secondary metabolites were isolated from the fermentation broth of the endophytic fungus Xylaria sp. SYPF 8246, including four new compounds, xylarianins A-D (1-4), three new natural products, 6-methoxycarbonyl-2'-methyl-3,5,4',6'-tetramethoxy-diphenyl ether (5), 2-chlor-6-methoxycarbonyl-2'-rnethyl-3,5,4',6'-tetramethoxy-diphenyl ether (6), and 2-chlor-4'-hydroxy-6-methoxy carbonyl-2'-methyl-3,5,6'-trimethoxy-diphenyl ether (7), and eleven known compounds (8-18). Their structural elucidations were conducted by using 1D and 2D NMR, HRESIMS, and Rh2(OCOCF3)4-induced electronic circular dichroism (ECD) spectra analyses. The integrated 1H and 13C NMR data of three new natural products 5-7 were reported for the first time. All the isolated compounds were assayed for their inhibitory activities against human carboxylesterase 2 (hCE 2). Compounds 1, 5-9, and 18 displayed significant inhibitory activities against hCE 2 with IC50 values of 10.43 ±â€¯0.51, 6.69 ±â€¯0.85, 12.36 ±â€¯1.27, 18.25 ±â€¯1.78, 29.78 ±â€¯0.48, 18.86 ±â€¯1.87, and 20.72 ±â€¯1.51 µM, respectively. The interactions between compounds 1 and 5 with hCE 2 were anaylzed by molecular docking.


Assuntos
Benzofenonas/química , Carboxilesterase/antagonistas & inibidores , Succinatos/química , Xylariales/química , Benzofenonas/isolamento & purificação , Carboxilesterase/química , Domínio Catalítico , Humanos , Cinética , Simulação de Acoplamento Molecular , Metabolismo Secundário , Succinatos/isolamento & purificação , Xylariales/metabolismo
7.
Xenobiotica ; 47(5): 376-381, 2017 May.
Artigo em Inglês | MEDLINE | ID: mdl-27359323

RESUMO

1. The exposed level of vitamin A in plasma might be exceeded due to the both inadvertent and clinical utilization. The adverse effects of vitamin A have been frequently reported, however, the mechanism remains unclear. The inhibition of vitamin A on the activity of UDP-glucuronosyltransferases (UGTs) was determined using in vitro incubation system to explain the adverse effects of vitamin A from a new perspective. 2. UGT supersomes catalyzed glucuronidation of 4-methylumbelliferone (4-MU), trifluoperazine (TFP), and cotinine was used as the probe reaction to evaluate the inhibition of vitamin A toward UGT isoforms, and 100 µM of vitamin A significantly inhibited the activity of all the tested UGT isoforms. Vitamin A exerted competitive inhibition on the activity of UGT1A1, 2B4, 2B7, and 2B15, and the inhibition kinetic parameters (Ki) were calculated to be 31.1, 16.8, 2.2, and 11.6 µM for UGT1A1, 2B4, 2B7, and 2B15. In silico docking method was used to try to elucidate the inhibition mechanism of vitamin A toward UGT2B7. The results showed the significant contribution of hydrogen bonds and hydrophobic interaction on the UGT2B7 inhibition by vitamin A. 3. The present study provides a new perspective for the adverse effects of vitamin A through reporting the inhibition of vitamin A on the activity of important phase II drug-metabolizing enzymes UGTs, which benefits our deep understanding of mechanism of vitamin A's adverse effects when high exposure of vitamin A occurs.


Assuntos
Inibidores Enzimáticos/farmacologia , Glucuronosiltransferase/metabolismo , Vitamina A/farmacologia , Inibidores Enzimáticos/metabolismo , Himecromona , Cinética , Vitamina A/metabolismo
8.
Pharmacol Res ; 110: 139-150, 2016 08.
Artigo em Inglês | MEDLINE | ID: mdl-27208893

RESUMO

The wide application of herbal medicines and foods containing steroids has resulted in the high risk of herb-drug interactions (HDIs). The present study aims to evaluate the inhibition potential of 43 natural steroids from herb medicines toward human UDP- glucuronosyltransferases (UGTs). A remarkable structure-dependent inhibition toward UGT1A4 was observed in vitro. Some natural steroids such as gitogenin, tigogenin, and solasodine were found to be the novel selective inhibitors of UGT1A4, and did not inhibit the activities of major human CYP isoforms. To clarify the possibility of the in vivo interaction of common steroids and clinical drugs, the kinetic inhibition type and related kinetic parameters (Ki) were measured. The target compounds 2-6 and 15, competitively inhibited the UGT1A4-catalyzed trifluoperazine glucuronidation reaction, with Ki values of 0.6, 0.18, 1.1, 0.7, 0.8, and 12.3µM, respectively. And this inhibition of steroids towards UGT1A4 was also verified in human primary hepatocytes. Furthermore, a quantitative structure-activity relationship (QSAR) of steroids with inhibitory effects toward human UGT1A4 isoform was established using the computational methods. Our findings elucidate the potential for in vivo HDI effects of steroids in herbal medicine and foods, with the clinical dr ugs eliminated by UGT1A4, and reveal the vital pharamcophoric requirement of natural steroids for UGT1A4 inhibition activity.


Assuntos
Inibidores Enzimáticos/farmacologia , Glucuronosiltransferase/antagonistas & inibidores , Hepatócitos/efeitos dos fármacos , Interações Ervas-Drogas , Fitosteróis/farmacologia , Preparações de Plantas/farmacologia , Simulação por Computador , Inibidores Enzimáticos/química , Glucuronídeos/metabolismo , Glucuronosiltransferase/metabolismo , Hepatócitos/enzimologia , Humanos , Ligação de Hidrogênio , Interações Hidrofóbicas e Hidrofílicas , Inativação Metabólica , Cinética , Modelos Moleculares , Estrutura Molecular , Fitosteróis/química , Preparações de Plantas/química , Relação Quantitativa Estrutura-Atividade , Saponinas/química , Saponinas/farmacologia , Eletricidade Estática , Tamoxifeno/metabolismo , Trifluoperazina/metabolismo
9.
J Sep Sci ; 39(3): 595-602, 2016 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-26844931

RESUMO

Zibu Piyin Recipe is a traditional Chinese medicine that has been used for the clinical treatment of memory loss in China. However, the chemical components have not been thoroughly studied so far. To quickly identify the chemical components and understand the chemical profiles related to cognition improvement activity, ultra high performance liquid chromatography coupled with electrospray ionization quadrupole time-of-flight mass spectrometry has been applied. The analysis was performed on an Agilent 1290 ultra-high performance liquid chromatography system with a Poroshell 120 EC-C18 column (3.0 × 150 mm, 2.7 µm) using gradient elution. Using the optimized method, 155 chemical components in Zibu Piyin Recipe were tentatively identified. Among them, 112 components in negative ion mode, 73 constituents in positive ion mode, and 30 compounds in both modes could be detected. The major components were identified from Red Ginseng, Dan shen Root, White Paeony Root, liquorice root, Radix Polygalae, Tangerine Red Epicarp, Grassleaf Sweetflag Rhizome, Indian Buead, and lotus seed. These results suggest that the established rapid and robust method will be useful for identifying multiple constituents of traditional Chinese medicine prescriptions. This method could provide helpful chemical information for further in vivo pharmacological mechanism research of Zibu Piyin Recipe and new drug development for cognition improvement.


Assuntos
Cromatografia Líquida de Alta Pressão/métodos , Medicamentos de Ervas Chinesas/química , Espectrometria de Massas por Ionização por Electrospray/métodos , Medicina Tradicional Chinesa , Padrões de Referência
10.
Xenobiotica ; 46(6): 503-10, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-26560012

RESUMO

1. Fructus psoraleae (FP) is the dried ripe seeds of Psoralea corylifolia L. (Fabaceae) widely used in Asia, and has been reported to exert important biochemical and pharmacological activities. The adverse effects of FP remain unclear. The present study aims to determine the inhibition of human carboxylesterase 1 (CES1) by FP's major ingredients, including neobavaisoflavone, corylifolinin, coryfolin, psoralidin, corylin and bavachinin. 2. The probe substrate of CES1 2-(2-benzoyl-3-methoxyphenyl) benzothiazole (BMBT) was derived from 2-(2-hydroxy-3-methoxyphenyl) benzothiazole (HMBT), and human liver microsomes (HLMs)-catalyzed BMBT metabolism was used to phenotype the activity of CES1. In silico docking method was employed to explain the inhibition mechanism. 3. All the tested compounds exerted strong inhibition towards the activity of CES1 in a concentration-dependent behavior. Furthermore, the inhibition kinetics was determined for the inhibition of neobavaisoflavone, corylifolinin, coryfolin, corylin and bavachinin towards CES1. Both Dixon and Lineweaver-Burk plots showed that neobavaisoflavone, corylifolinin, coryfolin and corylin noncompetitively inhibited the activity of CES1, and bavachinin competitively inhibited the activity of CES1. The inhibition kinetic parameters (Ki) were calculated to be 5.3, 9.4, 1.9, 0.7 and 0.5 µM for neobavaisoflavone, corylifolinin, coryfolin, corylin and bavachinin, respectively. In conclusion, the inhibition behavior of CES1 by the FP's constituents was given in this article, indicating the possible adverse effects of FP through the disrupting CES1-catalyzed metabolism of endogenous substances and xenobiotics.


Assuntos
Hidrolases de Éster Carboxílico/antagonistas & inibidores , Extratos Vegetais/farmacologia , Psoralea/química , Fabaceae , Flavonoides/farmacologia , Humanos , Ligação de Hidrogênio , Interações Hidrofóbicas e Hidrofílicas , Cinética , Simulação de Acoplamento Molecular , Extratos Vegetais/química
11.
Phytother Res ; 30(1): 25-30, 2016 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-26536846

RESUMO

Drug-metabolizing enzymes inhibition-based drug-drug interaction remains to be the key limiting factor for the research and development of efficient herbal components to become clinical drugs. The present study aims to determine the inhibition of uridine 5'-diphospho-glucuronosyltransferases (UGTs) isoforms by two important efficient herbal ingredients isolated from Atractylodes macrocephala Koidz, atractylenolide I and III. In vitro recombinant UGTs-catalysed glucuronidation of 4-methylumbelliferone was used to determine the inhibition capability and kinetics of atractylenolide I and III towards UGT2B7, and in silico docking method was employed to explain the possible mechanism. Atractylenolide I and III exhibited specific inhibition towards UGT2B7, with negligible influence towards other UGT isoforms. Atractylenolide I exerted stronger inhibition potential than atractylenolide III towards UGT2B7, which is attributed to the different hydrogen bonds and hydrophobic interactions. Inhibition kinetic analysis was performed for the inhibition of atractylenolide I towards UGT2B7. Inhibition kinetic determination showed that atractylenolide I competitively inhibited UGT2B7, and inhibition kinetic parameter (Ki) was calculated to be 6.4 µM. In combination of the maximum plasma concentration of atractylenolide I after oral administration of 50 mg/kg atractylenolide I, the area under the plasma concentration-time curve ration AUCi /AUC was calculated to be 1.17, indicating the highly possible drug-drug interaction between atractylenolide I and drugs mainly undergoing UGT2B7-catalysed metabolism.


Assuntos
Glucuronosiltransferase/antagonistas & inibidores , Lactonas/química , Sesquiterpenos/química , Interações Medicamentosas , Glucuronosiltransferase/metabolismo , Humanos , Himecromona/metabolismo , Cinética , Isoformas de Proteínas/antagonistas & inibidores , Isoformas de Proteínas/metabolismo , Proteínas Recombinantes/metabolismo
12.
J Asian Nat Prod Res ; 18(3): 239-47, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-26577491

RESUMO

Bufalin was a typical bioactive bufadienolide, existed in the traditional Chinese medicine Chan Su with the high content of 1-5%. The in vivo metabolites (1-5) of bufalin were prepared by various chromatographic techniques from the bile samples of SD rats, which were administrated with bufalin orally. Their structures were determined on the basis of the widely spectroscopic data, including HRESIMS, 1D-, and 2D NMR. And 1-3, 5 were new compounds. In the in vitro cytotoxicity assay, metabolites (1-5) showed weaker cytotoxic effects than bufalin against human cancer cell lines A549 and H1299, which indicated that the metabolism was a significant pathway for the detoxification of bufalin. Structures analyses indicated that metabolites 1-5 were hydroxylated derivatives of bufalin. This study suggested that Phase I metabolism catalyzed by CYP450 enzymes was one of the metabolic ways of bufalin, which may promote the excretion of bufalin.


Assuntos
Bufanolídeos/isolamento & purificação , Sistema Enzimático do Citocromo P-450/metabolismo , Animais , Bufanolídeos/química , Bufanolídeos/farmacologia , Humanos , Hidroxilação , Masculino , Medicina Tradicional Chinesa , Estrutura Molecular , Ressonância Magnética Nuclear Biomolecular , Ratos , Ratos Sprague-Dawley
13.
J Nat Prod ; 78(10): 2372-80, 2015 Oct 23.
Artigo em Inglês | MEDLINE | ID: mdl-26425784

RESUMO

Twelve new and 10 known protostane triterpenoids were isolated from the rhizome of Alisma orientale. Their structures were elucidated based on physical data analyses, including UV, HRESIMS, NMR experiments ((1)H, (13)C NMR, (1)H-(1)H COSY, HSQC, HMBC, and NOESY), and induced electronic circular dichroism. New compounds 1-12 were classified as protostanes (1-10), 29-norprotostane (11), and 24-norprotostane (12) by structure analyses. Furthermore, the inhibitory effects on human carboxylesterases (hCE-1, hCE-2) of compounds 1-22 were evaluated. Compounds 2, 6, 9, and 11 showed moderate inhibitory activities and were selective toward hCE-2 enzymes, with IC50 values of 8.68, 4.72, 4.58, and 2.02 µM, respectively. The inhibition kinetics of compound 11 toward hCE-2 were established, and the Ki value was determined as 1.76 µM using a mixed inhibition model. The interaction of bioactive compound 11 with hCE-2 was shown using molecular docking.


Assuntos
Alisma/química , Carboxilesterase/antagonistas & inibidores , Medicamentos de Ervas Chinesas/isolamento & purificação , Medicamentos de Ervas Chinesas/farmacologia , Triterpenos/isolamento & purificação , Triterpenos/farmacologia , Carboxilesterase/metabolismo , Medicamentos de Ervas Chinesas/química , Medicamentos de Ervas Chinesas/farmacocinética , Humanos , Estrutura Molecular , Ressonância Magnética Nuclear Biomolecular , Extratos Vegetais/química , Rizoma/química , Triterpenos/química , Triterpenos/farmacocinética
14.
J Nat Prod ; 78(8): 1868-76, 2015 Aug 28.
Artigo em Inglês | MEDLINE | ID: mdl-26222905

RESUMO

Twelve new highly oxygenated lanostane triterpenoids and nine known ganoderic acids were isolated from the fruiting body of Ganoderma lucidum. The new compounds were lanostane nortriterpenoids with 27 carbons (1-5 and 8), lanostane nor-triterpenoids with 25 carbons (6 and 7), and lanostane triterpenoids (9-12) based on multiple spectroscopic data analysis, including HRESIMS, 1D-NMR, 2D-NMR, and CD. Compounds 1-5 were identified as rare nor-lanostanoids that contain a 17ß-pentatomic lactone ring. Compound 13, possessing a lactone ring, had been isolated previously. The P-glycoprotein (P-gp) inhibitory effects of compounds 1-21 were evaluated at a concentration of 20 µM using an adriamycin (ADM)-resistant human breast adenocarcinoma cell line (MCF-7/ADR). Compounds 1, 5, 18, and 20 and verapamil increased the accumulation of ADM in MCF-7/ADR cells approximately 3-fold when compared with the negative control. These data support the significant P-glycoprotein inhibitory activities of compounds 1, 5, 18, and 20. In silico docking analysis suggested these compounds had similar P-gp recognition mechanisms compared with those of verapamil (a classical inhibitor). Furthermore, in an in vitro bioassay, compounds 2, 4, 5, 6, and 18 showed moderate inhibitory effects against α-glucosidase compared with those of the positive control acarbose.


Assuntos
Subfamília B de Transportador de Cassetes de Ligação de ATP/metabolismo , Inibidores de Glicosídeo Hidrolases/isolamento & purificação , Inibidores de Glicosídeo Hidrolases/farmacologia , Lanosterol/isolamento & purificação , Lanosterol/farmacologia , Reishi/química , alfa-Glucosidases/efeitos dos fármacos , Doxorrubicina/farmacologia , Feminino , Carpóforos/química , Inibidores de Glicosídeo Hidrolases/química , Humanos , Lanosterol/química , Estrutura Molecular , Ressonância Magnética Nuclear Biomolecular
15.
Phytother Res ; 29(10): 1658-64, 2015 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-26084208

RESUMO

Structure-activity relationship for the inhibition of Schisandra chinensis's ingredients toward (Uridine-Diphosphate) UDP-glucuronosyltransferases (UGTs) activity was performed in the present study. In vitro incubation system was employed to screen the inhibition capability of S. chinensis's ingredients, and in silico molecular docking method was carried out to explain possible mechanisms. At 100 µM of compounds, the activity of UGTs was inhibited by less than 90% by schisandrol A, schisandrol B, schisandrin, schisandrin C, schisantherin A, gomisin D, and gomisin G. Schisandrin A exerted strong inhibition toward UGT1A1 and UGT1A3, with the residual activity to be 7.9% and 0% of control activity. Schisanhenol exhibited strong inhibition toward UGT2B7, with the residual activity to be 7.9% of control activity. Gomisin J of 100 µM inhibited 91.8% and 93.1% of activity of UGT1A1 and UGT1A9, respectively. Molecular docking prediction indicated different hydrogen bonds interaction resulted in the different inhibition potential induced by subtle structure alteration among schisandrin A, schisandrin, and schisandrin C toward UGT1A1 and UGT1A3: schisandrin A > schisandrin > schisandrin C. The detailed inhibition kinetic evaluation showed the strong inhibition of gomisin J toward UGT1A9 with the inhibition kinetic parameter (Ki ) to be 0.7 µM. Based on the concentrations of gomisin J in the plasma of the rats given with S. chinensis, high herb-drug interaction existed between S. chinensis and drugs mainly undergoing UGT1A9-mediated metabolism. In conclusion, in silico-in vitro method was used to give the inhibition information and possible inhibition mechanism for S. chinensis's components toward UGTs, which guide the clinical application of S. chinensis.


Assuntos
Glucuronosiltransferase/antagonistas & inibidores , Extratos Vegetais/farmacologia , Schisandra , Animais , Ciclo-Octanos , Dioxóis , Medicamentos de Ervas Chinesas/farmacologia , Interações Ervas-Drogas , Lignanas , Compostos Policíclicos , Ratos , Schisandra/química , Relação Estrutura-Atividade
17.
Mol Cancer ; 13: 203, 2014 Aug 31.
Artigo em Inglês | MEDLINE | ID: mdl-25175164

RESUMO

BACKGROUND: Gamabufotalin (CS-6), a major bufadienolide of Chansu, has been used for cancer therapy due to its desirable metabolic stability and less adverse effect. However, the underlying mechanism of CS-6 involved in anti-tumor activity remains poorly understood. METHODS: The biological functions of gamabufotalin (CS-6) were investigated by migration, colony formation and apoptosis assays in NSCLC cells. The nuclear localization and interaction between transcriptional co-activator p300 and NF-κB p50/p65 and their binding to COX-2 promoter were analyzed after treatment with CS-6. Molecular docking study was used to simulate the interaction of CS-6 with IKKß. The in vivo anti-tumor efficacy of CS-6 was also analyzed in xenografts nude mice. Western blot was used to detect the protein expression level. RESULTS: Gamabufotalin (CS-6) strongly suppressed COX-2 expression by inhibiting the phosphorylation of IKKß via targeting the ATP-binding site, thereby abrogating NF-κB binding and p300 recruitment to COX-2 promoter. In addition, CS-6 induced apoptosis by activating the cytochrome c and caspase-dependent apoptotic pathway. Moreover, CS-6 markedly down-regulated the protein levels of COX-2 and phosphorylated p65 NF-κB in tumor tissues of the xenograft mice, and inhibited tumor weight and size. CONCLUSIONS: Our study provides pharmacological evidence that CS-6 exhibits potential use in the treatment of COX-2-mediated diseases such as lung cancer.


Assuntos
Bufanolídeos/farmacologia , Carcinoma Pulmonar de Células não Pequenas/tratamento farmacológico , Ciclo-Oxigenase 2/metabolismo , Neoplasias Pulmonares/tratamento farmacológico , Sistema de Sinalização das MAP Quinases/efeitos dos fármacos , Venenos de Anfíbios/química , Animais , Carcinoma Pulmonar de Células não Pequenas/metabolismo , Carcinoma Pulmonar de Células não Pequenas/patologia , Linhagem Celular Tumoral , Ciclo-Oxigenase 2/genética , Humanos , Neoplasias Pulmonares/metabolismo , Neoplasias Pulmonares/patologia , Camundongos , Transplante de Neoplasias , Fosforilação/efeitos dos fármacos , Regiões Promotoras Genéticas/efeitos dos fármacos , Conformação Proteica , Ensaios Antitumorais Modelo de Xenoenxerto
18.
Toxicol Appl Pharmacol ; 277(1): 86-94, 2014 May 15.
Artigo em Inglês | MEDLINE | ID: mdl-24631340

RESUMO

Herb-drug interaction strongly limits the clinical application of herbs and drugs, and the inhibition of herbal components towards important drug-metabolizing enzymes (DMEs) has been regarded as one of the most important reasons. The present study aims to investigate the inhibition potential of andrographolide derivatives towards one of the most important phase II DMEs UDP-glucuronosyltransferases (UGTs). Recombinant UGT isoforms (except UGT1A4)-catalyzed 4-methylumbelliferone (4-MU) glucuronidation reaction and UGT1A4-catalyzed trifluoperazine (TFP) glucuronidation were employed to firstly screen the andrographolide derivatives' inhibition potential. High specific inhibition of andrographolide derivatives towards UGT2B7 was observed. The inhibition type and parameters (Ki) were determined for the compounds exhibiting strong inhibition capability towards UGT2B7, and human liver microsome (HLMs)-catalyzed zidovudine (AZT) glucuronidation probe reaction was used to furtherly confirm the inhibition behavior. In combination of inhibition parameters (Ki) and in vivo concentration of andrographolide and dehydroandrographolide, the potential in vivo inhibition magnitude was predicted. Additionally, both the in vitro inhibition data and computational modeling results provide important information for the modification of andrographolide derivatives as selective inhibitors of UGT2B7. Taken together, data obtained from the present study indicated the potential herb-drug interaction between Andrographis paniculata and the drugs mainly undergoing UGT2B7-catalyzed metabolic elimination, and the andrographolide derivatives as potential candidates for the selective inhibitors of UGT2B7.


Assuntos
Andrographis , Diterpenos/metabolismo , Glucuronosiltransferase/metabolismo , Interações Ervas-Drogas , Diterpenos/química , Repressão Enzimática/efeitos dos fármacos , Glucuronosiltransferase/efeitos dos fármacos , Humanos , Microssomos Hepáticos/efeitos dos fármacos , Microssomos Hepáticos/enzimologia
19.
J Asian Nat Prod Res ; 16(6): 623-8, 2014.
Artigo em Inglês | MEDLINE | ID: mdl-24911667

RESUMO

Resibufogenin (RB), a major bioactive bufadienolide, has the potential anticancer activity. In the present work, biotransformation of RB by Actinomucor elegans AS 3.2778 yielded five products, namely 3-oxo-resibufogenin (1), 3-epi-resibufogenin (2), 3-epi-12-oxo-hydroxylresibufogenin (3), 3α-acetoxy-15α-hydroxylbufalin (4), and 3-epi-12α-hydroxylresibufogenin (5), respectively. Among them, metabolites 3 and 4 are previously unreported. The chemical structures of metabolites 1-5 were fully elucidated on the basis of 2D NMR and HR-MS. The highly stereo- and regio-specific isomerization, hydroxylation, and esterification reactions were observed in the biotransformation process of RB by A. elegans. Their cytotoxicities against A549 and H1299 cells were evaluated.


Assuntos
Antineoplásicos/metabolismo , Bufanolídeos/metabolismo , Mucorales/metabolismo , Antineoplásicos/química , Antineoplásicos/farmacologia , Biotransformação , Bufanolídeos/química , Bufanolídeos/farmacologia , Ensaios de Seleção de Medicamentos Antitumorais , Humanos , Hidroxilação , Estrutura Molecular , Ressonância Magnética Nuclear Biomolecular
20.
J Lipid Res ; 54(12): 3334-44, 2013 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-24115227

RESUMO

Increased levels of bile acids (BAs) due to the various hepatic diseases could interfere with the metabolism of xenobiotics, such as drugs, and endobiotics including steroid hormones. UDP-glucuronosyltransferases (UGTs) are involved in the conjugation and elimination of many xenobiotics and endogenous compounds. The present study sought to investigate the potential for inhibition of UGT enzymes by BAs. The results showed that taurolithocholic acid (TLCA) exhibited the strongest inhibition toward UGTs, followed by lithocholic acid. Structure-UGT inhibition relationships of BAs were examined and in vitro-in vivo extrapolation performed by using in vitro inhibition kinetic parameters (Ki) in combination with calculated in vivo levels of TLCA. Substitution of a hydrogen with a hydroxyl group in the R1, R3, R4, R5 sites of BAs significantly weakens their inhibition ability toward most UGTs. The in vivo inhibition by TLCA toward UGT forms was determined with following orders of potency: UGT1A4 > UGT2B7 > UGT1A3 > UGT1A1 ∼ UGT1A7 ∼ UGT1A10 ∼ UGT2B15. In conclusion, these studies suggest that disrupted homeostasis of BAs, notably taurolithocholic acid, found in various diseases such as cholestasis, could lead to altered metabolism of xenobiotics and endobiotics through inhibition of UGT enzymes.


Assuntos
Inibidores Enzimáticos/farmacologia , Glucuronosiltransferase/antagonistas & inibidores , Glucuronosiltransferase/metabolismo , Doenças Metabólicas/enzimologia , Ácido Taurolitocólico/farmacologia , Biocatálise/efeitos dos fármacos , Glucuronosiltransferase/química , Humanos , Himecromona/metabolismo , Intestinos/enzimologia , Cinética , Fígado/enzimologia , Modelos Moleculares , Conformação Proteica , Trifluoperazina/metabolismo
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa