Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
Intervalo de ano de publicação
1.
Langmuir ; 40(27): 14110-14117, 2024 Jul 09.
Artigo em Inglês | MEDLINE | ID: mdl-38937926

RESUMO

The complex diffusion behaviors of rod-shaped nanoparticles near the solid-liquid interface are closely related to various biological processes and technological applications. Despite recent advancements in understanding the diffusion dynamics of nanoparticles near some specific solid-liquid interfaces, systematical studies to tune the interfacial interaction or fabricating nonuniform wall to see their effects on the nanorod (NR) diffusion are still lacking. This work utilized molecular dynamics simulations to investigate the rotational and translational diffusion dynamics of a single NR near the solid-liquid interface. We constructed a patterned wall featuring adjustable nonuniformity, which was accomplished by modifying the interaction between NR and the wall, noting that the resulting nonuniformity limits both the translational and rotational diffusion of NR, evident from decreases in diffusion coefficients and exponents. By trajectory analysis, we categorized the diffusion modes of NRs near the patterned wall with varied nonuniformities into three types: Fickian diffusion, desorption-mediated flight, and in-plane diffusion. Furthermore, energy analysis based on the adsorption-desorption mechanism has demonstrated that the three diffusion states are driven by interactions between the NR and the wall, which are primarily influenced by rotational diffusion. These results could significantly deepen the understanding of anisotropic nanoparticle interfacial diffusion and would provide new insights into the transport mechanisms of nanoparticles within confined environments.

2.
J Colloid Interface Sci ; 675: 848-856, 2024 Jul 09.
Artigo em Inglês | MEDLINE | ID: mdl-39002235

RESUMO

HYPOTHESIS: The scaling laws of drop pinch-off are known to be affected by drop compositions including dissolved polymers and non-Brownian particles. When the size of the particles is comparable to the characteristic length scale of the polymer network, these particles may interact strongly with the polymer environment, leading to new types of scaling behaviors not reported before. EXPERIMENTS: Using high-speed imaging, we experimentally studied the time evolution of the neck diameter hmin of drops composed of silica nanoparticles dispersed in PEO solution when extruded from a nozzle. FINDINGS: After initial Newtonian necking with hmin âˆ¼ t2/3, the subsequent stage may exhibit scaling variation, characterized by either exponential or power-law decay, depending on the nanoparticle volume fraction ϕ. The exponential decay hmin âˆ¼ e-t/τ signifies the coil-stretch transition in typical viscoelastic suspensions. We conducted an analysis of the power-law scenario hmin âˆ¼ tα at high ϕ, categorizing the entire process into three distinct regimes based on the exponents α. The dependences of critical thicknesses at transition points and exponents on polymer concentration offer initial insights into the potential transition from heterogeneous to homogeneous thinning in the mixture. This novel scaling variation bears implications for accurately predicting and controlling droplet fragmentation in industrial applications.

SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa