RESUMO
As an advance in hydrofunctionalization, we herein report that alcohols add to 1,3-dienes with high regio- and enantioselectivity. Using Ni-DuPhos, we access enantioenriched allylic ethers. Through the choice of solvent-free conditions, we control the reversibility of C-O bond formation. This work showcases a rare example of methanol as a reagent in asymmetric synthesis.
RESUMO
Chiral N-cyclopropyl pyrazoles and structurally related heterocycles are prepared using an earth-abundant copper catalyst under mild reaction conditions with high regio-, diastereo-, and enantiocontrol. The observed N2:N1 regioselectivity favors the more hindered nitrogen of the pyrazole. Experimental and DFT studies support a unique mechanism that features a five-centered aminocupration.
RESUMO
We describe a copper catalyst that promotes the addition of phosphines to cyclopropenes at ambient temperature. A range of cyclopropylphosphines bearing different steric and electronic properties can now be accessed in high yields and enantioselectivities. Enrichment of phosphorus stereocenters is also demonstrated via a Dynamic Kinetic Asymmetric Transformation (DyKAT) process. A combined experimental and theoretical mechanistic study supports an elementary step featuring insertion of a CuI -phosphido into a carbon-carbon double bond. Density functional theory calculations reveal migratory insertion as the rate- and stereo-determining step, followed by a syn-protodemetalation.
RESUMO
This study showcases the first enantioselective hydroselenation of styrenes. Organoselenium building blocks are accessed with selectivity for the branched isomer. Through a Rh-hydride pathway, C-Se bonds can be forged with excellent regio- and enantiocontrol.
Assuntos
Estirenos , Catálise , Compostos de Selênio , EstereoisomerismoRESUMO
Level anticrossings (LACs) are ubiquitous in quantum systems and have been exploited for spin-order transfer in hyperpolarized nuclear magnetic resonance spectroscopy. This paper examines the manifestations of adiabatic passage through a specific type of LAC found in homonuclear systems of chemically inequivalent coupled protons incorporating parahydrogen (pH2). Adiabatic passage through such a LAC is shown to elicit translation of the pH2 spin order. As an example, with prospective applications in biomedicine, proton spin polarizations of at least 19.8 ± 2.6% on the methylene protons and 68.7 ± 0.5% on the vinylic protons of selectively deuterated allyl pyruvate ester are demonstrated experimentally. After ultrasonic spray injection of a precursor solution containing propargyl pyruvate and a dissolved Rh catalyst into a chamber pressurized with 99% para-enriched H2, the products are collected and transported to a high magnetic field for NMR detection. The LAC-mediated hyperpolarization of the methylene protons is significant because of the stronger spin coupling to the pyruvate carbonyl 13C, setting up an ideal initial condition for subsequent coherence transfer by selective INEPT. Furthermore, the selective deuteration of the propargyl side arm increases the efficiency and polarization level. LAC-mediated translation of parahydrogen spin order completes the first step toward a new and highly efficient route for the 13C NMR signal enhancement of pyruvate via side-arm hydrogenation with parahydrogen.
Assuntos
Hidrogênio , Prótons , Hidrogênio/química , Espectroscopia de Ressonância Magnética , Imageamento por Ressonância Magnética/métodos , Ácido PirúvicoRESUMO
By using transition metal catalysts, chemists have altered the "logic of chemical synthesis" by enabling the functionalization of carbon-hydrogen bonds, which have traditionally been considered inert. Within this framework, our laboratory has been fascinated by the potential for aldehyde C-H bond activation. Our approach focused on generating acyl-metal-hydrides by oxidative addition of the formyl C-H bond, which is an elementary step first validated by Tsuji in 1965. In this Account, we review our efforts to overcome limitations in hydroacylation. Initial studies resulted in new variants of hydroacylation and ultimately spurred the development of related transformations (e.g., carboacylation, cycloisomerization, and transfer hydroformylation).Sakai and co-workers demonstrated the first hydroacylation of olefins when they reported that 4-pentenals cyclized to cyclopentanones, using stoichiometric amounts of Wilkinson's catalyst. This discovery sparked significant interest in hydroacylation, especially for the enantioselective and catalytic construction of cyclopentanones. Our research focused on expanding the asymmetric variants to access medium-sized rings (e.g., seven- and eight-membered rings). In addition, we achieved selective intermolecular couplings by incorporating directing groups onto the olefin partner. Along the way, we identified Rh and Co catalysts that transform dienyl aldehydes into a variety of unique carbocycles, such as cyclopentanones, bicyclic ketones, cyclohexenyl aldehydes, and cyclobutanones. Building on the insights gained from olefin hydroacylation, we demonstrated the first highly enantioselective hydroacylation of carbonyls. For example, we demonstrated that ketoaldehydes can cyclize to form lactones with high regio- and enantioselectivity. Following these reports, we reported the first intermolecular example that occurs with high stereocontrol. Ketoamides undergo intermolecular carbonyl hydroacylation to furnish α-acyloxyamides that contain a depsipeptide linkage.Finally, we describe how the key acyl-metal-hydride species can be diverted to achieve a C-C bond-cleaving process. Transfer hydroformylation enables the preparation of olefins from aldehydes by a dehomologation mechanism. Release of ring strain in the olefin acceptor offers a driving force for the isodesmic transfer of CO and H2. Mechanistic studies suggest that the counterion serves as a proton-shuttle to enable transfer hydroformylation. Collectively, our studies showcase how transition metal catalysis can transform a common functional group, in this case aldehydes, into structurally distinct motifs. Fine-tuning the coordination sphere of an acyl-metal-hydride species can promote C-C and C-O bond-forming reactions, as well as C-C bond-cleaving processes.
Assuntos
Aldeídos/síntese química , Cobalto/química , Complexos de Coordenação/química , Ródio/química , Aldeídos/química , Catálise , Estrutura MolecularRESUMO
Tandem catalysis enables the rapid construction of complex architectures from simple building blocks. This Perspective shares our interest in combining stereoselective hydrogenation with transformations such as isomerization, oxidation, and epimerization to solve diverse challenges. We highlight the use of tandem hydrogenation for preparing complex natural products from simple prochiral building blocks and present tandem catalysis involving transfer hydrogenation and dynamic kinetic resolution. Finally, we underline recent breakthroughs and opportunities for asymmetric hydrogenation.
Assuntos
Compostos Orgânicos/síntese química , Catálise , Hidrogenação , Estrutura Molecular , Compostos Orgânicos/química , Oxirredução , EstereoisomerismoRESUMO
In this article, we advance Rh-catalyzed hydrothiolation through the divergent reactivity of cyclopropenes. Cyclopropenes undergo hydrothiolation to provide cyclopropyl sulfides or allylic sulfides. The choice of bisphosphine ligand dictates whether the pathway involves ring-retention or ring-opening. Mechanistic studies reveal the origin for this switchable selectivity. Our results suggest the two pathways share a common cyclopropyl-Rh(III) intermediate. Electron-rich Josiphos ligands promote direct reductive elimination from this intermediate to afford cyclopropyl sulfides in high enantio- and diastereoselectivities. Alternatively, atropisomeric ligands (such as DTBM-BINAP) enable ring-opening from the cyclopropyl-Rh(III) intermediate to generate allylic sulfides with high enantio- and regiocontrol.
Assuntos
Ciclopropanos/química , Ligantes , Compostos de Sulfidrila/química , Compostos Alílicos/química , Catálise , Complexos de Coordenação/química , Ródio/química , Estereoisomerismo , Sulfetos/químicaRESUMO
We report the first enantioselective addition of pyrazoles to 1,3-dienes. Secondary and tertiary allylic pyrazoles can be generated with excellent regioselectivity. Mechanistic studies support a pathway distinct from previous hydroaminations: a Pd0 -catalyzed ligand-to-ligand hydrogen transfer (LLHT). This hydroamination tolerates a range of functional groups and advances the field of diene hydrofunctionalization.
Assuntos
Alcadienos/química , Pirazóis/química , Catálise , Ligantes , Estrutura Molecular , Paládio/química , EstereoisomerismoRESUMO
By using Rh-H catalysis, we couple α-nitroesters and alkynes to prepare α-amino-acid precursors. This atom-economical strategy generates two contiguous stereocenters, with high enantio- and diastereocontrol. In this transformation, the alkyne undergoes isomerization to generate a RhIII -π-allyl electrophile, which is trapped by an α-nitroester nucleophile. A subsequent reduction with In powder transforms the allylic α-nitroesters to the corresponding α,α-disubstituted α-amino esters.
Assuntos
Alcinos/química , Ésteres/química , Aminoácidos/química , Catálise , Complexos de Coordenação/química , Hidrogênio/química , Ródio/química , EstereoisomerismoRESUMO
Valuing diversity leads to scientific excellence, the progress of science and most importantly, it is simply the right thing to do. We can value diversity not only in words, but also in actions.
RESUMO
In this Article, we expand upon the catalytic hydrothiolation of 1,3-dienes to afford either allylic or homoallylic sulfides with high regiocontrol. Mechanistic studies support a pathway in which regioselectivity is dictated by the choice of counterion associated with the Rh center. Non-coordinating counterions, such as SbF6-, allow for η4-diene coordination to Rh complexes and result in allylic sulfides. In contrast, coordinating counterions, such as Cl-, favor neutral Rh complexes in which the diene binds η2 to afford homoallylic sulfides. We propose mechanisms that rationalize a fractional dependence on thiol for the 1,2-Markovnikov hydrothiolation while accounting for an inverse dependence on thiol in the 3,4- anti-Markovnikov pathway. Through the hydrothiolation of an essential oil (ß-farnesene), we achieve the first enantioselective synthesis of (-)-agelasidine A.
Assuntos
Alcadienos/química , Sulfetos/síntese química , Catálise , Complexos de Coordenação/química , Guanidinas/síntese química , Isomerismo , Cinética , Modelos Químicos , Ródio/química , Sesquiterpenos/química , Sulfonas/síntese químicaRESUMO
We report a dynamic kinetic resolution (DKR) of chiral 4-pentenals by olefin hydroacylation. A primary amine racemizes the aldehyde substrate via enamine formation and hydrolysis. Then, a cationic rhodium catalyst promotes hydroacylation to generate α,γ-disubstituted cyclopentanones with high enantio- and diastereoselectivities.
Assuntos
Aldeídos/química , Alcenos/química , Ciclopentanos/síntese química , Termodinâmica , Acilação , Catálise , Ciclopentanos/química , Hidrólise , Cinética , Estrutura Molecular , Ródio/química , EstereoisomerismoRESUMO
We report a Pd-catalyzed intermolecular hydrophosphinylation of 1,3-dienes to afford chiral allylic phosphine oxides. Commodity dienes and air stable phosphine oxides couple to generate organophosphorus building blocks with high enantio- and regiocontrol. This method constitutes the first asymmetric hydrophosphinylation of dienes.
Assuntos
Alcadienos/química , Compostos Alílicos/síntese química , Fosfinas/química , Catálise , Técnicas de Química Sintética/métodos , Complexos de Coordenação/química , Paládio/química , Fosfinas/síntese química , EstereoisomerismoRESUMO
We report a Rh-catalyzed hydrothiolation of 1,3-dienes, including petroleum feedstocks. Either secondary or tertiary allylic sulfides can be generated from the selective addition of a thiol to the more substituted double bond of a diene. The catalyst tolerates a wide range of functional groups, and the loading can be as low as 0.1 mol %.
Assuntos
Compostos de Sulfidrila/química , Alcinos/química , Compostos Alílicos/química , Aminação , Catálise , Ligantes , Ródio/química , Estereoisomerismo , Sulfetos/químicaRESUMO
We report a Rh-catalyst for accessing olefins from primary alcohols by a C-C bond cleavage that results in dehomologation. This functional group interconversion proceeds by an oxidation-dehydroformylation enabled by N, N-dimethylacrylamide as a sacrificial acceptor of hydrogen gas. Alcohols with diverse functionality and structure undergo oxidative dehydroxymethylation to access the corresponding olefins. Our catalyst protocol enables a two-step semisynthesis of (+)-yohimbenone and dehomologation of feedstock olefins.
Assuntos
Álcoois/química , Alcenos/síntese química , Catálise , Metilação , Estrutura Molecular , OxirreduçãoRESUMO
By using Pd0 /Mandyphos, we achieved a three-component aminoarylation of alkynes to generate enamines, which are then hydrolyzed to either α-arylphenones or α,α-diarylketones. This Pd-catalyzed method overcomes established known pathways to enable the use of amines as traceless directing groups for C-C bond formation.
Assuntos
Alcinos/química , Catálise , Hidrólise , Estrutura Molecular , Paládio/químicaRESUMO
We communicate a strategy for the hydrofunctionalization of 1,3-dienes via Rh-hydride catalysis. Conjugated dienes are coupled to nucleophiles to demonstrate the feasibility of novel C-C, C-O, C-S, and C-N bond forming processes. In the presence of a chiral JoSPOphos ligand, hydroamination generates chiral allylic amines with high regio- and enantioselectivity. Tuning both the pKa and steric properties of an acid-additive is critical for enantiocontrol.
Assuntos
Alcadienos/química , Aminas/síntese química , Indóis/química , Ródio/química , Aminas/química , Catálise , Estrutura Molecular , EstereoisomerismoRESUMO
We report an enantioselective coupling between α-branched aldehydes and alkynes to generate vicinal quaternary and tertiary carbon stereocenters. The choice of Rh and organocatalyst combination allows for access to all possible stereoisomers with high enantio-, diastereo-, and regioselectivity. Our study highlights the power of catalysis to activate two common functional groups and provide access to divergent stereoisomers and constitutional structures.