Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 99
Filtrar
1.
Int J Legal Med ; 138(5): 2037-2047, 2024 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-38802694

RESUMO

In forensic practice, determining the postmortem submersion interval (PMSI) and cause-of-death of cadavers in aquatic ecosystems has always been challenging task. Traditional approaches are not yet able to address these issues effectively and adequately. Our previous study proposed novel models to predict the PMSI and cause-of-death based on metabolites of blood from rats immersed in freshwater. However, with the advance of putrefaction, it is hardly to obtain blood samples beyond 3 days postmortem. To further assess the feasibility of PMSI estimation and drowning diagnosis in the later postmortem phase, gastrocnemius, the more degradation-resistant tissue, was collected from drowned rats and postmortem submersion model in freshwater immediately after death, and at 1 day, 3 days, 5 days, 7 days, and 10 days postmortem respectively. Then the samples were analyzed with liquid chromatography-tandem mass spectrometry (LC-MS/MS) to investigate the dynamic changes of the metabolites. A total of 924 metabolites were identified. Similar chronological changes of gastrocnemius metabolites were observed in the drowning and postmortem submersion groups. The difference in metabolic profiles between drowning and postmortem submersion groups was only evident in the initial 1 day postmortem, which was faded as the PMSI extension. Nineteen metabolites representing temporally-dynamic patterns were selected as biomarkers for PMSI estimation. A regression model was built based on these biomarkers with random forest algorithm, which yielded a mean absolute error (± SE) of 5.856 (± 1.296) h on validation samples from an independent experiment. These findings added to our knowledge of chronological changes in muscle metabolites from submerged vertebrate remains during decomposition, which provided a new perspective for PMSI estimation.


Assuntos
Afogamento , Água Doce , Imersão , Metabolômica , Modelos Animais , Músculo Esquelético , Mudanças Depois da Morte , Animais , Músculo Esquelético/metabolismo , Afogamento/diagnóstico , Afogamento/metabolismo , Masculino , Cromatografia Líquida , Espectrometria de Massas em Tandem , Ratos , Ratos Sprague-Dawley , Biomarcadores/metabolismo
2.
Inorg Chem ; 62(39): 15963-15970, 2023 Oct 02.
Artigo em Inglês | MEDLINE | ID: mdl-37725073

RESUMO

Solar-driven high-efficiency conversion of CO2 with water vapor into high-value-added alcohols is a promising approach for reducing CO2 emissions and achieving carbon neutrality. However, the rapid recombination of photogenerated carriers and low CO2 adsorption capacity of photocatalysts are usually the factors that limit their applicability. Herein, a series of low-cost Z-scheme heterostructures Cu2O/PCN-250-x are constructed by in situ growth of ultrasmall Cu2O nanoparticles on PCN-250. A systematic investigation revealed that there is a strong interaction between Cu2O nanoparticles and PCN-250. The resulting Cu2O/PCN-250-2 exhibits excellent photogenerated carrier separation efficiency and CO2 adsorption capacity, which dramatically promote the conversion of CO2 into alcohols. Notably, the total yield of 268 µmol gcat-1 for the production of CH3OH and CH3H2OH is superior to that of isolated PCN-250 and Cu2O. This study provides a new perspective for the design of a Cu2O nanoparticle/metal-organic framework Z-scheme heterojunction for the reduction of CO2 to alcohols with water vapor.

3.
Metabolomics ; 18(8): 66, 2022 08 04.
Artigo em Inglês | MEDLINE | ID: mdl-35925420

RESUMO

INTRODUCTION: Nowadays,the mechanical ventilation (MV) aims to rest the respiratory muscles while providing adequate gas exchange, and it has been a part of basic life support during general anesthesia as well as in critically ill patients with and without respiratory failure. However, MV itself has the potential to cause or worsen lung injury, which is also known as ventilator-induced lung injury (VILI). Thus, the early diagnosis of VILI is of great importance for the prevention and treatment of VILI. OBJECTIVE: This study aimed to investigate the metabolomes in the lung and plasma of mice receiving mechanical ventilation (MV). METHODS: Healthy mice were randomly assigned into control group; (2) high volume tidal (HV) group (30 ml/kg); (3) low volume tidal (LV) group (6 ml/kg). After ventilation for 4 h, mice were sacrificed and the lung tissue and plasma were collected. The lung and plasma were processed for the metabolomics analysis. We also performed histopathological examination on the lung tissue. RESULTS: We detected moderate inflammatory damage with alveolar septal thickening in the HV group compared with the normal and LV groups.The metabolomics analysis results showed MV altered the metabolism which was characterized by the dysregulation of γ-amino butyric acid (GABA) system and urea cycle (desregulations in plasma and lung guanidinosuccinic acid, argininosuccinic acid, succinic acid semialdehyde and lung GABA ), Disturbance of citric acid cycle (CAC) (increased plasma glutamine and lung phosphoenol pyruvate) and redox imbalance (desregulations in plasma and/or lung ascorbic acid, chenodeoxycholic acid, uric acid, oleic acid, stearidonic acid, palmitoleic acid and docosahexaenoic acid). Moreover, the lung and plasma metabolomes were also significantly different between LV and HV groups. CONCLUSIONS: Some lung and plasma metabolites related to the GABA system and urea cycle, citric acid cycle and redox balance were significantly altered, and they may be employed for the evaluation of VILI and serve as targets in the treatment of VILI.


Assuntos
Metabolômica , Lesão Pulmonar Induzida por Ventilação Mecânica , Animais , Pulmão/metabolismo , Camundongos , Camundongos Endogâmicos C57BL , Ureia/metabolismo , Lesão Pulmonar Induzida por Ventilação Mecânica/metabolismo , Lesão Pulmonar Induzida por Ventilação Mecânica/patologia , Lesão Pulmonar Induzida por Ventilação Mecânica/prevenção & controle , Ácido gama-Aminobutírico/metabolismo
4.
Mol Pharm ; 19(11): 4254-4263, 2022 11 07.
Artigo em Inglês | MEDLINE | ID: mdl-36173129

RESUMO

Sepsis is a global disease burden, and approximately 40% of cases develop acute lung injury (ALI). Bone marrow mesenchymal stromal cells (BMSCs) and their exosomes are widely used in treating a variety of diseases including sepsis. As an acute phase protein, serum amyloid A1 (SAA1) regulates inflammation and immunity. However, the role of SAA1 in BMSCs-exosomes in septic lung injury remains to be elucidated. Exosomes derived from serum and BMSCs were isolated by ultracentrifugation. SAA1 was silenced or overexpressed in mouse BMSCs using lentiviral plasmids, containing either SAA1-targeting short interfering RNAs or SAA1 cDNA. Sepsis was induced by cecal ligation and puncture (CLP). LPS was used to induce ALI in mice. Mouse alveolar macrophages were isolated by flow cytometry. Levels of SAA1, endotoxin, TNF-α, and IL-6 were measured using commercial kits. LPS internalization was monitored by immunostaining. RT-qPCR or immunoblots were performed to test gene and protein expressions. Serum exosomes of patients with sepsis-induced lung injury had significantly higher levels of SAA1, endotoxin, TNF-α, and IL-6. Overexpression of SAA1 in BMSCs inhibited CLP- or LPS-induced lung injury and decreased CLP- or LPS-induced endotoxin, TNF-α, and IL-6 levels. Administration of the SAA1 blocking peptide was found to partially inhibit SAA1-induced LPS internalization by mouse alveolar macrophages and reverse the protective effect of SAA1. In conclusion, BMSCs inhibit sepsis-induced lung injury through exosomal SAA1. These results highlight the importance of BMSCs, exosomes, and SAA1, which may provide novel directions for the treatment of septic lung injury.


Assuntos
Lesão Pulmonar Aguda , Células-Tronco Mesenquimais , Sepse , Proteína Amiloide A Sérica , Animais , Camundongos , Lesão Pulmonar Aguda/induzido quimicamente , Células da Medula Óssea/metabolismo , Interleucina-6/metabolismo , Lipopolissacarídeos/farmacologia , Fator de Necrose Tumoral alfa/metabolismo , Proteína Amiloide A Sérica/genética , Exossomos
5.
Int J Legal Med ; 136(3): 941-954, 2022 May.
Artigo em Inglês | MEDLINE | ID: mdl-35099605

RESUMO

Postmortem submersion interval (PMSI) estimation and cause-of-death discrimination of corpses in water have long been challenges in forensic practice. Recently, many studies have linked postmortem metabolic changes with PMI extension, providing a potential strategy for estimating PMSI using the metabolome. Additionally, there is a lack of potential indicators with high sensitivity and specificity for drowning identification. In the present study, we profiled the untargeted metabolome of blood samples from drowning and postmortem submersion rats at different PMSIs within 24 h by liquid chromatography-tandem mass spectrometry (LC-MS/MS). A total of 601 metabolites were detected. Four different machine learning algorithms, including random forest (RF), partial least squares (PLS), support vector machine (SVM), and neural network (NN), were used to compare the efficiency of the machine learning methods. Nineteen metabolites with obvious temporal regularity were selected as candidate biomarkers according to "IncNodePurity." Robust models were built with these biomarkers, which yielded a mean absolute error of 1.067 h. Additionally, 36 other metabolites were identified to build the classifier model for discriminating drowning and postmortem submersion (AUC = 1, accuracy = 95%). Our results demonstrated the potential application of metabolomics combined with machine learning in PMSI estimation and cause-of-death discrimination.


Assuntos
Afogamento , Algoritmos , Animais , Biomarcadores , Cromatografia Líquida , Humanos , Imersão , Aprendizado de Máquina , Metabolômica , Mudanças Depois da Morte , Ratos , Espectrometria de Massas em Tandem
6.
Inorg Chem ; 61(51): 21107-21114, 2022 Dec 26.
Artigo em Inglês | MEDLINE | ID: mdl-36524898

RESUMO

The design of white-light phosphor is highly desirable for practical applications in SSL (solid-state lighting) and its related fields. Dye-loaded metal-organic frameworks (MOFs) have been widely demonstrated as one type of promising down conversion materials for WLEDs (white-light-emitting diodes), but two issues (dye leakage and inadequate quantum efficiency) require to be addressed before possible applications. Here, a series of single-phase dyes@In-MOF phosphors have been prepared in two different ways: the in-situ process and soaking method. The study of these dyes@In-MOF phosphors confirms the importance of this in-situ process that could effectively increase dye loading and quantum efficiency and greatly decrease dye leakage. As a result, a perfect WLED, fabricated using the in-situ-synthesized (AF/RhB@In-MOF)-3 (AF: Acriflavine; RhB: Rhodamine B) and 450 nm blue LED chip, exhibited a very high quantum yield (QY, up to 42.27%), a high luminous efficacy (LE) of 50.75 lm/W, a high color rendering index (CRI) of 91.2, and nearly identical Commission International ed'Eclairage (CIE) coordinates (0.33,0.31), indicating the potential application of the dye-loaded MOFs with good color quality in smart white LEDs.

7.
Fa Yi Xue Za Zhi ; 38(1): 59-66, 2022 Feb 25.
Artigo em Inglês, Chinês | MEDLINE | ID: mdl-35725705

RESUMO

OBJECTIVES: The metabolomics technique of LC-MS/MS combined with data analysis was used to detect changes and differences in metabolic profiles in the vitreous humor of early rat carcasses found in water, and to explore the feasibility of its use for early postmortem submersion interval (PMSI) estimation and the cause of death determination. METHODS: The experimental model was established in natural lake water with 100 SD rats were randomly divided into a drowning group (n=50) and a postmortem (CO2 suffocation) immediately submersion group (n=50). Vitreous humor was extracted from 10 rats in each group at 0, 6, 12, 18 and 24 h postmortem for metabolomics analyses, of which 8 were used as the training set to build the model, and 2 were used as test set. PCA and PLS multivariate statistical analysis were performed to explore the differences in metabolic profiles among PMSI and causes of death in the training set samples. Then random forest (RF) algorithm was used to screen several biomarkers to establish a model. RESULTS: PCA and PLS analysis showed that the metabolic profiles had time regularity, but no differences were found among different causes of death. Thirteen small molecule biomarkers with good temporal correlation were selected by RF algorithm. A simple PMSI estimation model was constructed based on this indicator set, and the data of the test samples showed the mean absolute error (MAE) of the model was 0.847 h. CONCLUSIONS: The 13 metabolic markers screened in the vitreous humor of rat corpses in water had good correlations with the early PMSI. The simplified PMSI estimation model constructed by RF can be used to estimate the PMSI. Additionally, the metabolic profiles of vitreous humor cannot be used for early identification of cause of death in water carcasses.


Assuntos
Mudanças Depois da Morte , Corpo Vítreo , Animais , Biomarcadores/metabolismo , Cadáver , Cromatografia Líquida , Imersão , Ratos , Ratos Sprague-Dawley , Espectrometria de Massas em Tandem , Corpo Vítreo/metabolismo , Água/metabolismo
8.
Org Biomol Chem ; 19(27): 6120-6126, 2021 07 21.
Artigo em Inglês | MEDLINE | ID: mdl-34179916

RESUMO

By using a charcoal supported nano Cu0 catalyst (Cu/C), a highly efficient oxidation of α-diazo esters to α-ketoesters with molecular oxygen as the sole oxidant has been developed. In the presence of the Cu/C catalyst, 2-aryl-α-diazo esters with both electron-donating and electron-withdrawing groups can be oxidized to the corresponding α-ketoesters efficiently. Furthermore, this Cu/C catalyst can catalyse the reaction of aryl α-diazo ester with water to form aryl ketoester, 2-aryl-2-hydroxyl acetate ester and 2-aryl acetate ester. In this case, water is split by α-diazo ester, and the diazo group is displaced by the oxygen or hydrogen atom in water. Mechanistic investigation showed that the reaction of α-diazo ester with oxygen proceeds through a radical pathway. In the presence of 2,2,6,6-tetramethyl piperidine nitrogen oxide, the reaction of α-diazo ester with oxygen is dramatically inhibited. Furthermore, the reaction of α-diazo ester with water is investigated by an isotopic tracer method, and GCMS detection showed that a disproportionation reaction occurred between α-diazo ester and water.

9.
Pharm Biol ; 59(1): 760-768, 2021 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-34517742

RESUMO

CONTEXT: Salidroside, a compound extracted from Rhodiola rosea L. (Crassulaceae), possesses many beneficial pathological effects. OBJECTIVE: To explore the effect of salidroside on ventilator-induced lung endothelial dysfunction in vivo and in vitro. MATERIALS AND METHODS: In vivo, male ICR mice were divided into sham, ventilation, salidroside, and ventilation plus salidroside groups. The mice were ventilated for 4 h, salidroside (50 mg/kg) was administrated intraperitoneally before ventilation, dexamethasone (Dex) (5 mg/kg) was used as a positive control. In vitro, mouse lung vascular endothelial cells (MLVECs) were treated with salidroside, MMP-9 siRNA, and BAY11-7082 (10 µM), and then exposed to cyclic stretch for 4 h. Afterward, lung tissues and MLVECs were collected for further analysis. RESULTS: Salidroside pre-treatment significantly reversed the expression of vascular endothelial cadherin (VE-cadherin) and zonula occluden-1 (ZO-1) proteins in cyclic stretch-treated MLVECs (0.46 ± 0.09 vs. 0.80 ± 0.14, 0.49 ± 0.05 vs. 0.88 ± 0.08) and ventilated lung tissues (0.56 ± 0.06 vs. 0.83 ± 0.46, 0.49 ± 0.08 vs. 0.80 ± 0.12). The results further indicated that salidroside inhibited the expression of matrix metalloproteinase-9 (MMP-9), whereas knockdown of its expression restored the expression levels of VE-cadherin (0.37 ± 0.08 vs. 0.85 ± 0.74) and ZO-1 (0.48 ± 0.08 vs. 0.81 ± 0.11) in stretched MLVECs. Meanwhile, salidroside inhibited the NF-κB signalling pathway and alleviated lung injury. CONCLUSIONS: Salidroside protected against stretch-induced endothelial barrier function, improving lung injury after ventilation. Thus, salidroside may be a promising therapeutic agent for patients with MV-induced lung injury.


Assuntos
Células Endoteliais/efeitos dos fármacos , Glucosídeos/farmacologia , Metaloproteinase 9 da Matriz/genética , Fenóis/farmacologia , Lesão Pulmonar Induzida por Ventilação Mecânica/prevenção & controle , Animais , Dexametasona/farmacologia , Células Endoteliais/patologia , Técnicas de Silenciamento de Genes , Glucosídeos/isolamento & purificação , Masculino , Camundongos , Camundongos Endogâmicos ICR , NF-kappa B/metabolismo , Fenóis/isolamento & purificação , Rhodiola/química , Transdução de Sinais/efeitos dos fármacos
10.
Int J Legal Med ; 134(6): 2149-2159, 2020 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-32617663

RESUMO

The diagnosis of drowning is one of the major challenges in forensic practice, especially when the corpse is in a state of decomposition. Novel indicators of drowning are desired in the field of forensic medicine. In the past decade, aquatic bacteria have attracted great attention from forensic experts because they can easily enter the blood circulation with drowning medium, and some of them can proliferate in the corpse. Recently, the advent of next-generation sequencing (NGS) has created new opportunities to efficiently analyze whole microbial communities and has catalyzed the development of forensic microbiology. We presumed that NGS could be a potential method for diagnosing drowning. In the present study, we verified this hypothesis by fundamental experiments in drowned and postmortem-submersed rat models. Our study revealed that detecting the bacterial communities with NGS and processing the data in a transparent way with unweighted UniFrac-based principal coordinates analysis (PCoA) could clearly discriminate the skin, lung, blood, and liver specimens of the drowning group and postmortem submersion group. Furthermore, the acquired information could be used to identify new cases. Taken together, these results suggest that we could build a microbial database of drowned and postmortem-submersed victims by NGS and subsequently use a bioinformatic method to diagnose drowning in future forensic practice.


Assuntos
Organismos Aquáticos/microbiologia , Bactérias/classificação , Afogamento/diagnóstico , Afogamento/microbiologia , Medicina Legal/métodos , Sequenciamento de Nucleotídeos em Larga Escala , Animais , Sangue/microbiologia , Modelos Animais de Doenças , Fígado/microbiologia , Pulmão/microbiologia , Masculino , Ratos , Ratos Sprague-Dawley , Pele/microbiologia
11.
Eur J Neurosci ; 50(2): 1981-1993, 2019 07.
Artigo em Inglês | MEDLINE | ID: mdl-30828870

RESUMO

Nrf2 plays a pivotal role in antioxidant response and anti-inflammation after traumatic brain injury (TBI), and its deletion aggravates TBI-induced brain damage. Previous studies have demonstrated that Nrf2 is activated post TBI, but dynamic changes in expression and cell type-specific characteristics remain unclear. In this study, the Feeney weight-drop contusion model was conducted to mimic TBI, and the ipsilateral cerebral cortex was collected at 1, 3, 7 and 14 days post TBI (dpi). Nrf2 protein levels were observed by western blot. Cell type-specific localization of Nrf2 after TBI was detected at different time intervals by double immunofluorescence staining. NeuN, GFAP, IBA1 and NG2 were used as cell type-specific markers to neurons, astrocytes, microglia and NG2 glia, respectively. After TBI, Nrf2 protein levels peaked at 1 dpi. Robust transient Nrf2 accumulation was co-localized with neurons, which was predominant at 1 dpi. Continuous weak Nrf2 expression was detected in activated astrocytes, and the number of double positive cells peaked at 7 dpi. Inducible widespread immunostaining of Nrf2 was observed in the nucleus of the microglia, and the number of Nrf2+ microglia peaked at 7 dpi. In addition, we also explored colocalization of Nrf2 in NG2 glia, in which the percentage of Nrf2+ in NG2 glia reached a climax at 3 dpi. This study reveals that the accumulation of endogenous Nrf2 might mediate different pathophysical roles in neurons and glias after TBI, the cell-type specific and time-dependent expression provide insights to explain the roles of Nrf2 in different neural cells.


Assuntos
Contusão Encefálica/metabolismo , Córtex Cerebral/metabolismo , Fator 2 Relacionado a NF-E2/metabolismo , Neuroglia/metabolismo , Neurônios/metabolismo , Animais , Modelos Animais de Doenças , Masculino , Camundongos , Camundongos Endogâmicos C57BL
12.
Crit Care Med ; 47(7): e587-e596, 2019 07.
Artigo em Inglês | MEDLINE | ID: mdl-31205087

RESUMO

OBJECTIVES: The R-spondin family attenuates tissue damage via tightening endothelium and preventing vascular leakage. This study aims to investigate whether R-spondins protect against mechanical stretch-induced endothelial dysfunction and lung injury and to reveal the underlying mechanisms. DESIGN: Randomized controlled study. SETTING: University research laboratory. SUBJECTS: Patients scheduled to undergo surgery with mechanical ventilation support. Adult male Institute of Cancer Research mice. Primary cultured mouse lung vascular endothelial cells. INTERVENTIONS: Patients underwent a surgical procedure with mechanical ventilation support of 3 hours or more. Mice were subjected to mechanical ventilation (6 or 30 mL/kg) for 0.5-4 hours. Another group of mice were intraperitoneally injected with 1 mg/kg lipopolysaccharide, and 12 hours later subjected to mechanical ventilation (10 mL/kg) for 4 hours. Mouse lung vascular endothelial cells were subjected to cyclic stretch for 4 hours. MEASUREMENTS AND MAIN RESULTS: R-spondin1 were downregulated in both surgical patients and experimental animals exposed to mechanical ventilation. Intratracheal instillation of R-spondin1 attenuated, whereas knockdown of pulmonary R-spondin1 exacerbated ventilator-induced lung injury and mechanical stretch-induced lung vascular endothelial cell apoptosis. The antiapoptotic effect of R-spondin1 was mediated through the leucine-rich repeat containing G-protein coupled receptor 5 in cyclic stretched mouse lung vascular endothelial cells. We identified apoptosis-stimulating protein of p53 2 as the intracellular signaling protein interacted with leucine-rich repeat containing G-protein coupled receptor 5. R-spondin1 treatment decreased the interaction of apoptosis-stimulating protein of p53 2 with p53 while increased the binding of apoptosis-stimulating protein of p53 2 to leucine-rich repeat containing G-protein coupled receptor 5, therefore resulting in inactivation of p53-mediated proapoptotic pathway in cyclic stretched mouse lung vascular endothelial cells. CONCLUSIONS: Mechanical ventilation leads to down-regulation of R-spondin1. R-spondin1 may enhance the interaction of leucine-rich repeat containing G-protein coupled receptor 5 and apoptosis-stimulating protein of p53 2, thus inactivating p53-mediated proapoptotic pathway in cyclic stretched mouse lung vascular endothelial cells. R-spondin1 may have clinical benefit in alleviating mechanical ventilator-induced lung injury.


Assuntos
Regulação para Baixo/fisiologia , Pulmão/fisiopatologia , Trombospondinas/sangue , Lesão Pulmonar Induzida por Ventilação Mecânica/prevenção & controle , Animais , Líquido da Lavagem Broncoalveolar/citologia , Células Cultivadas , Modelos Animais de Doenças , Masculino , Camundongos , Distribuição Aleatória , Reação em Cadeia da Polimerase em Tempo Real , Transdução de Sinais
13.
Microb Pathog ; 136: 103707, 2019 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-31491549

RESUMO

Riemerella anatipestifer (R. anatipestifer) causes septicemia and infectious serositis in domestic ducks, leading to high mortality and great economic losses worldwide. Vaccination is currently considered the best strategy to prevent R. anatipestifer infection in ducklings. In this study, we fused the duck IgY Fc gene to the outer membrane protein A (ompA) of R. anatipestifer. The eukaryotic expression plasmid carrying the fusion gene was transformed into Pichia pastoris (P. pastoris) to express the recombinant ompA and ompA-Fc proteins. Then, the effects of fused Fc on the vitality and antigen processing efficiency of duck peritoneal macrophages (PMø) were evaluated in vitro, whereas their immunogenicity was evaluated in vivo. Furthermore, Schisandra chinensis polysaccharide (SCP) was used to evaluate its immune-conditioning effects on the activation of PMø. SCP was also used as adjuvant to investigate immunomodulation on immunoresponses induced by the fused ompA-Fc in ducklings. The conventional Freund's incomplete adjuvant served as the control of SCP. Notably, ompA-Fc promoted phagocytosis of PMø and significantly increased serum antibody titers, CD4+ and CD8+ T-lymphocyte counts, lymphocyte transformation rate, and serum levels of IL-2 and IL-4. In addition, ducklings injected with the ompA-Fc vaccine exhibited considerably greater resistance to the R. anatipestifer challenge than those that received vaccines based on standalone ompA. Of note, SCP was demonstrated to boost the secretion of nitric oxide (NO), IL-1ß, IL-6, TNF-α, and IFN-ß by duck macrophages. In addition, the supplementation of SCP adjuvant to the ompA-Fc vaccines led to the further enhancement of immune response and vaccine protection. The dose of 200 µg/mL showed the most pronounced effects. This study provided valuable insights into protective strategies against R. anatipestifer infection.


Assuntos
Proteínas da Membrana Bacteriana Externa/imunologia , Vacinas Bacterianas/imunologia , Vacinas Bacterianas/isolamento & purificação , Doenças das Aves/prevenção & controle , Patos , Infecções por Flavobacteriaceae/veterinária , Riemerella/imunologia , Adjuvantes Imunológicos/administração & dosagem , Adjuvantes Imunológicos/isolamento & purificação , Animais , Anticorpos Antibacterianos/sangue , Proteínas da Membrana Bacteriana Externa/genética , Vacinas Bacterianas/genética , Linfócitos T CD4-Positivos/imunologia , Linfócitos T CD8-Positivos/imunologia , Citocinas/metabolismo , Infecções por Flavobacteriaceae/prevenção & controle , Fragmentos Fc das Imunoglobulinas/genética , Imunoglobulinas/genética , Macrófagos Peritoneais/imunologia , Polissacarídeos/administração & dosagem , Polissacarídeos/imunologia , Proteínas Recombinantes de Fusão/genética , Proteínas Recombinantes de Fusão/imunologia , Riemerella/genética , Schisandra/química , Vacinas Sintéticas/genética , Vacinas Sintéticas/imunologia , Vacinas Sintéticas/isolamento & purificação
14.
Med Sci Monit ; 25: 3199-3211, 2019 May 01.
Artigo em Inglês | MEDLINE | ID: mdl-31040263

RESUMO

BACKGROUND The processes of mechanical ventilation-induced lung injury (VILI) triggers the release of high-mobility group box 1 (HMGB1), a prominent damage-associated molecular pattern (DAMP) family member, which can cause damage to pulmonary vascular endothelial cells. We aimed to determine whether propofol protected against endothelial cell injury induced by HMGB1 in vitro and in vivo. MATERIAL AND METHODS ICR mice (male) were mechanically ventilated for 4 h after anesthetization at both low tidal volume (LVT, 6 ml/kg) and high tidal volume (HVT, 30 ml/kg). A propofol bolus (10 mg/kg) was administered to the animals prior to the onset of ventilation, followed by infusion at 5 mg/(kg·h). We obtained confluent cultures of mouse lung vascular endothelial cells (MLVECs) and then performed cyclic stretching at 20% stretch for 4 h with or without propofol. RESULTS HMGB1 reduced the expression of tight junctions between endothelial cells, including VE-cadherin and ZO-1, and increased endothelial permeability, and both were blocked by propofol. We found that MLVECs exhibited mitochondrial oxidative damage by HMGB1, which was successfully suppressed through administration of MnTBAP as well as propofol. Propofol ameliorated HVT-associated lung vascular hyperpermeability and HMGB1 production in vivo. Propofol also inhibited HMBG1 release caused by cyclic stretching in MLVECs in vitro. CONCLUSIONS Our results prove that the cyto-protective function of propofol protects against lung ventilation-induced dysfunction of the lung endothelial barrier. This function of propofol is mediated through inhibition of HMGB1 release caused by mechanical stretching and mitochondrial oxidative damage triggered by HMGB1.


Assuntos
Endotélio Vascular/efeitos dos fármacos , Proteína HMGB1/metabolismo , Pulmão/irrigação sanguínea , Pulmão/efeitos dos fármacos , Mitocôndrias/efeitos dos fármacos , Propofol/farmacologia , Lesão Pulmonar Induzida por Ventilação Mecânica/tratamento farmacológico , Lesão Pulmonar Aguda/tratamento farmacológico , Lesão Pulmonar Aguda/metabolismo , Lesão Pulmonar Aguda/patologia , Animais , Catálise , Modelos Animais de Doenças , Células Endoteliais/efeitos dos fármacos , Células Endoteliais/metabolismo , Endotélio Vascular/metabolismo , Endotélio Vascular/patologia , Proteína HMGB1/antagonistas & inibidores , Proteína HMGB1/genética , Proteína HMGB1/farmacologia , Humanos , Pulmão/metabolismo , Pulmão/patologia , Masculino , Camundongos , Camundongos Endogâmicos ICR , Mitocôndrias/metabolismo , Estresse Oxidativo/efeitos dos fármacos , RNA/genética , RNA/metabolismo , Proteínas Recombinantes/farmacologia , Respiração Artificial/efeitos adversos , Volume de Ventilação Pulmonar , Lesão Pulmonar Induzida por Ventilação Mecânica/metabolismo , Lesão Pulmonar Induzida por Ventilação Mecânica/patologia
15.
Cell Physiol Biochem ; 48(3): 1245-1258, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-30045018

RESUMO

BACKGROUND/AIMS: Loss of endothelial barrier function plays an important role in the development of ventilator-induced lung injury (VILI). This study aimed to investigate the effects of miR135a on VILI in a model of mechanical stretch (MS)-induced human umbilical vein endothelial cell (HUVEC) injury. METHODS: HUVECs were randomly assigned to 7 groups: blank, negative control (NC), NC+MS, miR135a over-expression (mi-miR135a), mi-miR135a + MS, miR135a silencing (si-miR135a) and si-miR135a + MS groups. MS was induced by subjecting cells to cyclic stretch at 20% stretch for 4 h. After 24 h, levels of reactive oxygen species (ROS) were measured by DCFH-DA fluorescence intensity. Apoptosis was measured using annexin V-FITC/propidium iodide assay with flow cytometry. Inflammatory cytokine levels were determined by ELISA. Barrier integrity was determined using FITC-conjugated dextran assay. Expression levels of PI3K, p-PI3K, Akt, p-Akt, Bcl-2 and Bax were examined using western blotting. The interaction between miR135a and PHLPP2 was evaluated by dual-luciferase reporter assay. RESULTS: Our results showed that MS reduced cell numbers, increased the number of apoptotic cells, increased ROS, barrier dysfunction and inflammatory cytokines in HUVECs, and reduced p-PI3K and p-Akt expression; silencing of miR135a worsened MS-induced HUVEC injury. However, miR135a over-expression protected HUVECs against MS-induced increases in apoptotic cells, ROS, barrier dysfunction and inflammatory cytokines, which were accompanied by activation of the PI3K/Akt signaling pathway. Simultaneous silencing of miR135a and PHLPP2 partially salvaged the effects of miR135a silencing, and miR135a was found to interact with PHLPP2. CONCLUSION: miR135a may protect HUVECs from MS-induced injury by inhibiting PHLPP2 to activate PI3k/Akt signaling pathway.


Assuntos
Células Endoteliais/metabolismo , Lesão Pulmonar/genética , MicroRNAs/genética , Fosfatidilinositol 3-Quinases/metabolismo , Fosfoproteínas Fosfatases/genética , Proteínas Proto-Oncogênicas c-akt/metabolismo , Transdução de Sinais , Apoptose , Células Endoteliais/citologia , Células Endoteliais/patologia , Ativação Enzimática , Regulação da Expressão Gênica , Células Endoteliais da Veia Umbilical Humana , Humanos , Lesão Pulmonar/etiologia , Lesão Pulmonar/metabolismo , Lesão Pulmonar/patologia , MicroRNAs/metabolismo , Fosfoproteínas Fosfatases/metabolismo , Estresse Mecânico
16.
Crit Care Med ; 46(1): e49-e58, 2018 01.
Artigo em Inglês | MEDLINE | ID: mdl-29088003

RESUMO

OBJECTIVES: Mechanical ventilation can induce lung fibrosis. This study aimed to investigate whether ventilator-induced lung fibrosis was associated with endothelial-mesenchymal transition and to uncover the underlying mechanisms. DESIGN: Randomized, controlled animal study and cell culture study. SETTING: University research laboratory. SUBJECTS: Adult male Institute of Cancer Research, NACHT, LRR, and PYD domains-containing protein 3 (NLRP3) knockout and wild-type mice. Primary cultured mouse lung vascular endothelial cells. INTERVENTIONS: Institute of Cancer Research, NLRP3 knockout and wild-type mice were subjected to mechanical ventilation (20 mL/kg) for 2 hours. Mouse lung vascular endothelial cells were subjected to cyclic stretch for 24 hours. MEASUREMENTS AND MAIN RESULTS: Mice subjected to mechanical ventilation exhibited increases in collagen deposition, hydroxyproline and type I collagen contents, and transforming growth factor-ß1 in lung tissues. Ventilation-induced lung fibrosis was associated with increased expression of mesenchymal markers (α smooth muscle actin and vimentin), as well as decreased expression of endothelial markers (vascular endothelial-cadherin and CD31). Double immunofluorescence staining showed the colocalization of CD31/α smooth muscle actin, CD31/vimentin, and CD31/fibroblast-specific protein-1 in lung tissues, indicating endothelial-mesenchymal transition formation. Mechanical ventilation also induced NLRP3 inflammasome activation in lung tissues. In vitro direct mechanical stretch of primary mouse lung vascular endothelial cells resulted in similar NLRP3 activation and endothelial-mesenchymal transition formation, which were prevented by NLRP3 knockdown. Furthermore, mechanical stretch-induced endothelial-mesenchymal transition and pulmonary fibrosis were ameliorated in NLRP3-deficient mice as compared to wild-type littermates. CONCLUSIONS: Mechanical stretch may promote endothelial-mesenchymal transition and pulmonary fibrosis through a NLRP3-dependent pathway. The inhibition of endothelial-mesenchymal transition by NLRP3 inactivation may be a viable therapeutic strategy against pulmonary fibrosis associated with mechanical ventilation.


Assuntos
Modelos Animais de Doenças , Endotélio Vascular/fisiopatologia , Inflamassomos/fisiologia , Pulmão/irrigação sanguínea , Mecanotransdução Celular/fisiologia , Mesoderma/fisiopatologia , Proteína 3 que Contém Domínio de Pirina da Família NLR/fisiologia , Fibrose Pulmonar/fisiopatologia , Animais , Células Cultivadas , Células Endoteliais/fisiologia , Camundongos , Camundongos Endogâmicos ICR , Camundongos Knockout
17.
Toxicol Appl Pharmacol ; 346: 28-36, 2018 05 01.
Artigo em Inglês | MEDLINE | ID: mdl-29571711

RESUMO

Traumatic brain injury (TBI), which leads to high mortality and morbidity, is a prominent public health problem worldwide with no effective treatment. Curcumin has been shown to be beneficial for neuroprotection in vivo and in vitro, but the underlying mechanism remains unclear. This study determined whether the neuroprotective role of curcumin in mouse TBI is dependent on the NF-E2-related factor (Nrf2) pathway. The Feeney weight-drop contusion model was used to mimic TBI. Curcumin was administered intraperitoneally 15 min after TBI induction, and brains were collected at 24 h after TBI. The levels of Nrf2 and its downstream genes (Hmox-1, Nqo1, Gclm, and Gclc) were detected by Western blot and qRT-PCR at 24 h after TBI. In addition, edema, oxidative damage, cell apoptosis and inflammatory reactions were evaluated in wild type (WT) and Nrf2-knockout (Nrf2-KO) mice to explore the role of Nrf2 signaling after curcumin treatment. In wild type mice, curcumin treatment resulted in reduced ipsilateral cortex injury, neutrophil infiltration, and microglia activation, improving neuron survival against TBI-induced apoptosis and degeneration. These effects were accompanied by increased expression and nuclear translocation of Nrf2, and enhanced expression of antioxidant enzymes. However, Nrf2 deletion attenuated the neuroprotective effects of curcumin in Nrf2-KO mice after TBI. These findings demonstrated that curcumin effects on TBI are associated with the activation the Nrf2 pathway, providing novel insights into the neuroprotective role of Nrf2 and the potential therapeutic use of curcumin for TBI.


Assuntos
Lesões Encefálicas Traumáticas/tratamento farmacológico , Curcumina/farmacologia , Fator 2 Relacionado a NF-E2/metabolismo , Fármacos Neuroprotetores/farmacologia , Transdução de Sinais/efeitos dos fármacos , Animais , Antioxidantes/metabolismo , Apoptose/efeitos dos fármacos , Encéfalo/efeitos dos fármacos , Encéfalo/metabolismo , Lesões Encefálicas Traumáticas/metabolismo , Modelos Animais de Doenças , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Estresse Oxidativo/efeitos dos fármacos
18.
Inorg Chem ; 57(7): 3833-3839, 2018 Apr 02.
Artigo em Inglês | MEDLINE | ID: mdl-29561148

RESUMO

The integration of terpyridyl and tricarboxylate functionality in a novel ligand allows concerted 3:1 stoichiometric assembly of size-and charge-complementary Zn2+/Tb3+ ions into a water-stable 3D luminescent framework (CTGU-8) capable of highly selective, sensitive, and recyclable of nitrofurans.

19.
Chem Pharm Bull (Tokyo) ; 66(7): 691-700, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-29962452

RESUMO

Ventilator-induced lung injury (VILI) has implications for mortality from acute lung injury (ALI) and for acute respiratory distress syndrome (ARDS) patients; the complicated mechanisms of VILI have not been well defined. To discover new biomarkers and mechanisms of VILI, isobaric Tag for Relative and Absolute Quantitation (iTRAQ)-based quantitative proteomics were applied to identify differentially expressed proteins in mice treated with high tidal volume ventilation (HV), low tidal volume ventilation (LV) and lipopolysaccharide (LPS). A total of 14 dysregulated proteins showed the same change trend both in the LV and HV group and no change in the LPS group, and most importantly, the fold change of these proteins increased with the increase of volume ventilation, which indicates these proteins may be considered as potential markers specific for VILI. Ingenuity pathway analysis (IPA) canonical pathways analysis identified the top 4 canonical pathways, including the extrinsic prothrombin activation pathway, coagulation systems, the intrinsic prothrombin activation pathway and the acute phase response, suggesting that these pathways, as associated with these proteins' expression, may be important therapeutic targets for reducing VILI. These findings will provide a new perspective for understanding the pathogenesis of VILI in the future.


Assuntos
Pulmão/metabolismo , Proteoma/análise , Proteoma/metabolismo , Proteômica/métodos , Lesão Pulmonar Induzida por Ventilação Mecânica/metabolismo , Animais , Lipopolissacarídeos/farmacologia , Pulmão/química , Pulmão/efeitos dos fármacos , Masculino , Camundongos , Camundongos Endogâmicos ICR
20.
Small ; 13(22)2017 06.
Artigo em Inglês | MEDLINE | ID: mdl-28418186

RESUMO

Exploring novel multifunctional rare earth materials is very important because these materials have fundamental interests, such as new structural facts and connecting modes, as well as potential technological applications, including optics, magnetic properties, sorption, and catalytic behaviors. Especially, employing these nanomaterials for sensing or catalytic reactions is still very challenging. Herein, a new superstable, anionic terbium-metal-organic-framework, [H2 N(CH3 )2 ][Tb(cppa)2 (H2 O)2 ], (China Three Gorges University (CTGU-1), H2 cppa = 5-(4-carboxyphenyl)picolinic acid), is successfully prepared, which can be used as a turn-on, highly-sensitive fluorescent sensor to detect Eu3+ and Dy3+ , with a detection limitation of 5 × 10-8 and 1 × 10-4 m in dimethylformamide, respectively. This result represents the first example of lanthanide-metal-organic-frameworks (Ln-MOF) that can be employed as a discriminative fluorescent probe to recognize Eu3+ and Dy3+ . In addition, through ion exchanging at room temperature, Ag(I) can be readily reduced in situ and embedded in the anionic framework, which leads to the formation of nanometal-particle@Ln-MOF composite with uniform size and distribution. The as-prepared Ag@CTGU-1 shows remarkable catalytic performance to reduce 4-nitrophenol, with a reduction rate constant κ as large as 2.57 × 10-2 s-1 ; almost the highest value among all reported noble-metal-nanoparticle@MOF composites.

SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa