Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros

Base de dados
País como assunto
Ano de publicação
Tipo de documento
Intervalo de ano de publicação
1.
Anal Chem ; 91(21): 13576-13581, 2019 11 05.
Artigo em Inglês | MEDLINE | ID: mdl-31550899

RESUMO

The noble gas radioisotopes 85Kr, 81Kr, and 39Ar are nearly ideal environmental tracers because of their chemical inertness and simple transport mechanisms. Recent advances in Atom Trap Trace Analysis have enabled measurements of 85Kr and 81Kr using 10-20 kg of water or ice, and 39Ar in only a few kilograms, making these tracers available to be applied in the earth sciences on a large-scale. To meet the resulting increase in demand, we have developed an automated process for the dual separation of krypton and argon from environmental samples based on titanium gettering and gas chromatography. 0.5-4 L STP air samples have been purified, demonstrating purities and recoveries of >90% for krypton and >99% for argon within 90-120 min of processing time. Samples of high methane admixtures, a challenge regularly encountered in groundwater applications, have been purified by exploiting the full potential of titanium gettering at high temperatures (>1000 °C). Samples with 0.4-48 L STP of methane admixture are processed in 2-5 h without compromising purity or recovery. The applicability of the purification system is further demonstrated using actual groundwater samples with carbon dioxide and methane content in the extracted gas up to 16 L STP and 42 L STP, respectively.

2.
Artigo em Inglês | MEDLINE | ID: mdl-35457437

RESUMO

Climate heterogeneity has enormous impacts on CO2 emissions of the transportation sector, especially in cold regions where the demand for in-car heating and anti-skid measures leads to high energy consumption, and the penetration rate of electric vehicles is low. It entails to propose targeted emission reduction measures in cold regions for peaking CO2 emissions as soon as possible. This paper constructs an integrated long-range energy alternatives planning system (LEAP) model that incorporates multi-transportation modes and multi-energy types to predict the CO2 emission trend of the urban transportation sector in a typical cold province of China. Five scenarios are set based on distinct level emission control for simulating the future trends during 2017-2050. The results indicate that the peak value is 704.7-742.1 thousand metric tons (TMT), and the peak time is 2023-2035. Energy-saving-low-carbon scenario (ELS) is the optimal scenario with the peak value of 716.6 TMT in 2028. Energy intensity plays a dominant role in increasing CO2 emissions of the urban transportation sector. Under ELS, CO2 emissions can be reduced by 68.66%, 6.56% and 1.38% through decreasing energy intensity, increasing the proportion of public transportation and reducing the proportion of fossil fuels, respectively. Simultaneously, this study provides practical reference for other cold regions to formulate CO2 reduction roadmaps.


Assuntos
Dióxido de Carbono , Carbono , Dióxido de Carbono/análise , China , Eletricidade , Calefação , Meios de Transporte
3.
Artigo em Inglês | MEDLINE | ID: mdl-35805488

RESUMO

Peaking industrial carbon dioxide (CO2) emissions is critical for China to achieve its CO2 peaking target by 2030 since industrial sector is a major contributor to CO2 emissions. Heavy industrial regions consume plenty of fossil fuels and emit a large amount of CO2 emissions, which also have huge CO2 emissions reduction potential. It is significant to accurately forecast CO2 emission peak of industrial sector in heavy industrial regions from multi-industry and multi-energy type perspectives. This study incorporates 41 industries and 16 types of energy into the Long-Range Energy Alternatives Planning System (LEAP) model to predict the CO2 emission peak of the industrial sector in Jilin Province, a typical heavy industrial region. Four scenarios including business-as-usual scenario (BAU), energy-saving scenario (ESS), energy-saving and low-carbon scenario (ELS) and low-carbon scenario (LCS) are set for simulating the future CO2 emission trends during 2018−2050. The method of variable control is utilized to explore the degree and the direction of influencing factors of CO2 emission in four scenarios. The results indicate that the peak value of CO2 emission in the four scenarios are 165.65 million tons (Mt), 156.80 Mt, 128.16 Mt, and 114.17 Mt in 2040, 2040, 2030 and 2020, respectively. Taking ELS as an example, the larger energy-intensive industries such as ferrous metal smelting will peak CO2 emission in 2025, and low energy industries such as automobile manufacturing will continue to develop rapidly. The influence degree of the four factors is as follows: industrial added value (1.27) > industrial structure (1.19) > energy intensity of each industry (1.12) > energy consumption types of each industry (1.02). Among the four factors, industrial value added is a positive factor for CO2 emission, and the rest are inhibitory ones. The study provides a reference for developing industrial CO2 emission reduction policies from multi-industry and multi-energy type perspectives in heavy industrial regions of developing countries.


Assuntos
Dióxido de Carbono , Indústrias , Dióxido de Carbono/análise , China , Comércio , Previsões , Combustíveis Fósseis
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa