Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 1.340
Filtrar
1.
Trends Genet ; 39(10): 724-727, 2023 10.
Artigo em Inglês | MEDLINE | ID: mdl-37563056

RESUMO

Reference genomes facilitate trait improvement by aiding in the elucidation of causal genetic elements. Thanks to the recent release of a reference sequence for the faba bean, breeders and geneticists are poised to accelerate precision breeding and genetic improvement of this important crop.


Assuntos
Vicia faba , Vicia faba/genética , Melhoramento Vegetal , Fenótipo , Genoma de Planta/genética
2.
J Biol Chem ; 300(6): 107382, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38763337

RESUMO

ASCT2 (alanine serine cysteine transporter 2), a member of the solute carrier 1 family, mediates Na+-dependent exchange of small neutral amino acids across cell membranes. ASCT2 was shown to be highly expressed in tumor cells, making it a promising target for anticancer therapies. In this study, we explored the binding mechanism of the high-affinity competitive inhibitor L-cis hydroxyproline biphenyl ester (Lc-BPE) with ASCT2, using electrophysiological and rapid kinetic methods. Our investigations reveal that Lc-BPE binding requires one or two Na+ ions initially bound to the apo-transporter with high affinity, with Na1 site occupancy being more critical for inhibitor binding. In contrast to the amino acid substrate bound form, the final, third Na+ ion cannot bind, due to distortion of its binding site (Na2), thus preventing the formation of a translocation-competent complex. Based on the rapid kinetic analysis, the application of Lc-BPE generated outward transient currents, indicating that despite its net neutral nature, the binding of Lc-BPE in ASCT2 is weakly electrogenic, most likely because of asymmetric charge distribution within the amino acid moiety of the inhibitor. The preincubation with Lc-BPE also led to a decrease of the turnover rate of substrate exchange and a delay in the activation of substrate-induced anion current, indicating relatively slow Lc-BPE dissociation kinetics. Overall, our results provide new insight into the mechanism of binding of a prototypical competitive inhibitor to the ASCT transporters.


Assuntos
Sistema ASC de Transporte de Aminoácidos , Antígenos de Histocompatibilidade Menor , Sistema ASC de Transporte de Aminoácidos/metabolismo , Sistema ASC de Transporte de Aminoácidos/antagonistas & inibidores , Sistema ASC de Transporte de Aminoácidos/genética , Sistema ASC de Transporte de Aminoácidos/química , Cinética , Antígenos de Histocompatibilidade Menor/metabolismo , Antígenos de Histocompatibilidade Menor/genética , Antígenos de Histocompatibilidade Menor/química , Humanos , Sódio/metabolismo , Sódio/química , Animais , Ligação Competitiva
3.
Eur J Immunol ; : e2350655, 2024 Jul 07.
Artigo em Inglês | MEDLINE | ID: mdl-38973083

RESUMO

Sepsis arises from an uncontrolled inflammatory response triggered by infection or stress, accompanied by alteration in cellular energy metabolism, and a strong correlation exists between these factors. Alpha-ketoglutarate (α-KG), an intermediate product of the TCA cycle, has the potential to modulate the inflammatory response and is considered a crucial link between energy metabolism and inflammation. The scavenger receptor (SR-A5), a significant pattern recognition receptor, assumes a vital function in anti-inflammatory reactions. In the current investigation, we have successfully illustrated the ability of α-KG to mitigate inflammatory factors in the serum of septic mice and ameliorate tissue damage. Additionally, α-KG has been shown to modulate metabolic reprogramming and macrophage polarization. Moreover, our findings indicate that the regulatory influence of α-KG on sepsis is mediated through SR-A5. We also elucidated the mechanism by which α-KG regulates SR-A5 expression and found that α-KG reduced the N6-methyladenosine level of macrophages by up-regulating the m6A demethylase ALKBH5. α-KG plays a crucial role in inhibiting inflammation by regulating SR-A5 expression through m6A demethylation during sepsis. The outcomes of this research provide valuable insights into the relationship between energy metabolism and inflammation regulation, as well as the underlying molecular regulatory mechanism.

4.
PLoS Biol ; 20(11): e3001856, 2022 11.
Artigo em Inglês | MEDLINE | ID: mdl-36318514

RESUMO

Feingold syndrome type 1, caused by loss-of-function of MYCN, is characterized by varied phenotypes including esophageal and duodenal atresia. However, no adequate model exists for studying the syndrome's pathological or molecular mechanisms, nor is there a treatment strategy. Here, we developed a zebrafish Feingold syndrome type 1 model with nonfunctional mycn, which had severe intestinal atresia. Single-cell RNA-seq identified a subcluster of intestinal cells that were highly sensitive to Mycn, and impaired cell proliferation decreased the overall number of intestinal cells in the mycn mutant fish. Bulk RNA-seq and metabolomic analysis showed that expression of ribosomal genes was down-regulated and that amino acid metabolism was abnormal. Northern blot and ribosomal profiling analysis showed abnormal rRNA processing and decreases in free 40S, 60S, and 80S ribosome particles, which led to impaired translation in the mutant. Besides, both Ribo-seq and western blot analysis showed that mTOR pathway was impaired in mycn mutant, and blocking mTOR pathway by rapamycin treatment can mimic the intestinal defect, and both L-leucine and Rheb, which can elevate translation via activating TOR pathway, could rescue the intestinal phenotype of mycn mutant. In summary, by this zebrafish Feingold syndrome type 1 model, we found that disturbance of ribosomal biogenesis and blockage of protein synthesis during development are primary causes of the intestinal defect in Feingold syndrome type 1. Importantly, our work suggests that leucine supplementation may be a feasible and easy treatment option for this disease.


Assuntos
Microcefalia , Peixe-Zebra , Animais , Proteína Proto-Oncogênica N-Myc , Peixe-Zebra/metabolismo , Microcefalia/genética , Serina-Treonina Quinases TOR/metabolismo , Leucina
5.
Exp Cell Res ; 436(2): 113976, 2024 Mar 15.
Artigo em Inglês | MEDLINE | ID: mdl-38401687

RESUMO

Glioma is the most common brain malignancy, characterized by high morbidity, high mortality, and treatment-resistance. Inverted CCAAT box Binding Protein of 90 kDa (ICBP90) has been reported to be involved in tumor progression and the maintenance of DNA methylation. Herein, we constructed ICBP90 over-expression and knockdown glioma cell lines, and found that ICBP90 knockdown inhibited glioma cell proliferation, migration, and invasion. ICBP90 silencing potentially enhanced cellular sensitivity to cis-platinum (DDP) and exacerbated DDP-induced pyroptosis, manifested by the elevated levels of gasdermin D-N-terminal and cleaved caspase 1; whereas, ICBP90 over-expression exhibited the opposite effects. Consistently, ICBP90 knockdown inhibited tumor growth in an in vivo mouse xenograft study using U251 cells stably expressing sh-ICBP90 and oe-ICBP90. Further experiments found that ICBP90 reduced the expression of Dickkopf 3 homolog (DKK3), a negative regulator of ß-catenin, by binding its promoter and inducing DNA methylation. ICBP90 knockdown prevented the nuclear translocation of ß-catenin and suppressed the expression of c-Myc and cyclin D1. Besides, DKK3 over-expression restored the effects of ICBP90 over-expression on cell proliferation, migration, invasion, and DDP sensitivity. Our findings suggest that ICBP90 inhibits the expression of DKK3 in glioma by maintaining DKK3 promoter methylation, thereby conducing to ICBP90-mediated carcinogenesis and drug insensitivity.


Assuntos
Glioma , beta Catenina , Humanos , Animais , Camundongos , beta Catenina/metabolismo , Cisplatino/farmacologia , Peptídeos e Proteínas de Sinalização Intercelular/genética , Peptídeos e Proteínas de Sinalização Intercelular/metabolismo , Metilação de DNA/genética , Epigênese Genética/genética , Glioma/genética , Linhagem Celular Tumoral , Proliferação de Células/genética , Proteínas Adaptadoras de Transdução de Sinal/genética , Proteínas Adaptadoras de Transdução de Sinal/metabolismo
6.
Mol Cell Proteomics ; 22(4): 100526, 2023 04.
Artigo em Inglês | MEDLINE | ID: mdl-36889440

RESUMO

Successful placentation requires delicate communication between the endometrium and trophoblasts. The invasion and integration of trophoblasts into the endometrium during early pregnancy are crucial to placentation. Dysregulation of these functions is associated with various pregnancy complications, such as miscarriage and preeclampsia. The endometrial microenvironment has an important influence on trophoblast cell functions. The precise effect of the endometrial gland secretome on trophoblast functions remains uncertain. We hypothesized that the hormonal environment regulates the miRNA profile and secretome of the human endometrial gland, which subsequently modulates trophoblast functions during early pregnancy. Human endometrial tissues were obtained from endometrial biopsies with written consent. Endometrial organoids were established in matrix gel under defined culture conditions. They were treated with hormones mimicking the environment of the proliferative phase (Estrogen, E2), secretory phase (E2+Progesterone, P4), and early pregnancy (E2+P4+Human Chorionic Gonadotropin, hCG). miRNA-seq was performed on the treated organoids. Organoid secretions were also collected for mass spectrometric analysis. The viability and invasion/migration of the trophoblasts after treatment with the organoid secretome were determined by cytotoxicity assay and transwell assay, respectively. Endometrial organoids with the ability to respond to sex steroid hormones were successfully developed from human endometrial glands. By establishing the first secretome profiles and miRNA atlas of these endometrial organoids to the hormonal changes followed by trophoblast functional assays, we demonstrated that sex steroid hormones modulate aquaporin (AQP)1/9 and S100A9 secretions through miR-3194 activation in endometrial epithelial cells, which in turn enhanced trophoblast migration and invasion during early pregnancy. By using a human endometrial organoid model, we demonstrated for the first time that the hormonal regulation of the endometrial gland secretome is crucial to regulating the functions of human trophoblasts during early pregnancy. The study provides the basis for understanding the regulation of early placental development in humans.


Assuntos
MicroRNAs , Trofoblastos , Feminino , Humanos , Gravidez , Endométrio/metabolismo , Hormônios Esteroides Gonadais/metabolismo , MicroRNAs/genética , MicroRNAs/metabolismo , Organoides/metabolismo , Placenta/metabolismo , Secretoma , Trofoblastos/metabolismo , Aquaporinas/metabolismo
7.
Cancer Sci ; 115(7): 2269-2285, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38720175

RESUMO

Dysregulation of long noncoding RNA (lncRNA) expression plays a pivotal role in the initiation and progression of gastric cancer (GC). However, the regulation of lncRNA SNHG15 in GC has not been well studied. Mechanisms for ferroptosis by SNHG15 have not been revealed. Here, we aimed to explore SNHG15-mediated biological functions and underlying molecular mechanisms in GC. The novel SNHG15 was identified by analyzing RNA-sequencing (RNA-seq) data of GC tissues from our cohort and TCGA dataset, and further validated by qRT-PCR in GC cells and tissues. Gain- and loss-of-function assays were performed to examine the role of SNHG15 on GC both in vitro and in vivo. SNHG15 was highly expressed in GC. The enhanced SNHG15 was positively correlated with malignant stage and poor prognosis in GC patients. Gain- and loss-of-function studies showed that SNHG15 was required to affect GC cell growth, migration and invasion both in vitro and in vivo. Mechanistically, the oncogenic transcription factors E2F1 and MYC could bind to the SNHG15 promoter and enhance its expression. Meanwhile, SNHG15 increased E2F1 and MYC mRNA expression by sponging miR-24-3p. Notably, SNHG15 could also enhance the stability of SLC7A11 in the cytoplasm by competitively binding HNRNPA1. In addition, SNHG15 inhibited ferroptosis through an HNRNPA1-dependent regulation of SLC7A11/GPX4 axis. Our results support a novel model in which E2F1- and MYC-activated SNHG15 regulates ferroptosis via an HNRNPA1-dependent modulation of the SLC7A11/GPX4 axis, which serves as the critical effectors in GC progression, and provides a new therapeutic direction in the treatment of GC.


Assuntos
Sistema y+ de Transporte de Aminoácidos , Progressão da Doença , Ferroptose , Regulação Neoplásica da Expressão Gênica , Ribonucleoproteína Nuclear Heterogênea A1 , Fosfolipídeo Hidroperóxido Glutationa Peroxidase , RNA Longo não Codificante , Neoplasias Gástricas , Neoplasias Gástricas/genética , Neoplasias Gástricas/patologia , Neoplasias Gástricas/metabolismo , Humanos , RNA Longo não Codificante/genética , RNA Longo não Codificante/metabolismo , Ribonucleoproteína Nuclear Heterogênea A1/metabolismo , Ribonucleoproteína Nuclear Heterogênea A1/genética , Animais , Linhagem Celular Tumoral , Camundongos , Ferroptose/genética , Masculino , Sistema y+ de Transporte de Aminoácidos/genética , Sistema y+ de Transporte de Aminoácidos/metabolismo , Feminino , Fosfolipídeo Hidroperóxido Glutationa Peroxidase/metabolismo , Fosfolipídeo Hidroperóxido Glutationa Peroxidase/genética , Proliferação de Células/genética , Fator de Transcrição E2F1/metabolismo , Fator de Transcrição E2F1/genética , Movimento Celular/genética , Proteínas Proto-Oncogênicas c-myc/metabolismo , Proteínas Proto-Oncogênicas c-myc/genética , Pessoa de Meia-Idade , Prognóstico , Camundongos Nus , Transdução de Sinais/genética , Retroalimentação Fisiológica
8.
Virol J ; 21(1): 56, 2024 03 06.
Artigo em Inglês | MEDLINE | ID: mdl-38448926

RESUMO

BACKGROUND: Southwest China is one of the largest karst regions in the world. Karst environment is relatively fragile and vulnerable to human activities. Due to the discharge of sewage and domestic garbage, the karst system may be polluted by pathogenic bacteria. The detection of bacterial distribution and identification of phage capable of infecting them is an important approach for environmental assessment and resource acquisition. METHODS: Bacteria and phages were isolated from karst water in southwest China using the plate scribing and double plate method, respectively. Isolated phage was defined by transmission electron microscopy, one-step growth curve and optimal multiplicity of infection (MOI). Genomic sequencing, phylogenetic analysis, comparative genomic and proteomic analysis were performed. RESULTS: A Klebsiella quasipneumoniae phage was isolated from 32 isolates and named KL01. KL01 is morphologically identified as Caudoviricetes with an optimal MOI of 0.1, an incubation period of 10 min, and a lysis period of 60 min. The genome length of KL01 is about 45 kb, the GC content is 42.5%, and it contains 59 open reading frames. The highest average nucleotide similarity between KL01 and a known Klebsiella phage 6939 was 83.04%. CONCLUSIONS: KL01 is a novel phage, belonging to the Autophagoviridae, which has strong lytic ability. This study indicates that there were not only some potential potentially pathogenic bacteria in the karst environment, but also phage resources for exploration and application.


Assuntos
Bacteriófagos , Humanos , Bacteriófagos/genética , Filogenia , Proteômica , Klebsiella/genética , Bactérias , China
9.
J Oral Pathol Med ; 2024 Jun 12.
Artigo em Inglês | MEDLINE | ID: mdl-38866540

RESUMO

BACKGROUND: Oral lichen planus (OLP) is a common T cell-mediated oral mucosal immune inflammatory disease. Intraepithelial lymphocytes (IELs) are a unique subset of T cells that play an important role in regulating immune response. This study aims to investigate the phenotype and the differentiation mechanism of IELs in OLP. METHODS: The expression of CD4, CD8α, CD8ß, T-helper-inducing POZ/Krueppel-like factor (ThPOK), and RUNX family transcription factor 3 (Runx3) in the epithelium and peripheral blood mononuclear cells (PBMCs) of OLP was determined by immunofluorescence and immunohistochemistry. Then, the correlations among them were analyzed. Naïve CD4+ T cells were sorted from blood of OLP patients and stimulated with retinoic acid (RA) and transforming growth factor-ß1 (TGF-ß1). Then the expression of CD4, CD8α, CD8ß, ThPOK, and Runx3 was investigated by immunocytochemistry. RESULTS: CD8α expression and CD8αα+ cells were upregulated in the epithelium of OLP, whereas they were downregulated in PBMCs of OLP. CD8ß was not expressed in the epithelium of OLP. CD4, CD8α, and Runx3 expression and CD4+CD8α+ cells were increased, whereas ThPOK expression was decreased in the epithelium of OLP. CD8α expression was positively correlated with Runx3 expression, whereas ThPOK expression was negatively correlated with Runx3 expression. After RA and TGF-ß1 stimulation, CD8α and Runx3 expression was upregulated, and ThPOK expression was downregulated in naïve CD4+ T cells. CONCLUSION: CD4+CD8αα+ IELs may be the dominant phenotype of IELs in OLP, and the differentiation of CD4+CD8αα+ IELs in OLP is negatively regulated by ThPOK and positively regulated by Runx3.

10.
J Biochem Mol Toxicol ; 38(3): e23669, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38459698

RESUMO

Paclitaxel (PTX) is a chemotherapeutic agent that is widely used for the treatment of several types of tumors. However, PTX-induced peripheral neuropathy (PIPN) is an adverse effect generally induced by long-term PTX use that significantly impairs the quality of life. Necroptosis has been implicated in various neurodegenerative disorders. Necroptosis of dorsal root ganglion neurons triggers the pathogenesis of PIPN. Therefore, the present study aims to investigate the role of spinal neuronal necroptosis in PIPN. It also explores the potential role of microglial polarization in necroptosis. We established rat models of PIPN via quartic PTX administration on alternate days (accumulated dose: 8 mg/kg). PTX induced obvious neuronal necroptosis and upregulated the expression of receptor-interacting protein kinase (RIP3) and mixed lineage kinase domain-like protein (MLKL) in the spinal dorsal horn. These effects were inhibited with a necroptosis pathway inhibitor, necrostatin-1 (Nec-1). The effect of microglial polarization on the regulation of spinal necroptosis was elucidated by administering minocycline to inhibit PTX-induced M1 polarization of spinal microglia caused by PTX. We observed a significant inhibitory effect of minocycline on PTX-induced necroptosis in spinal cord cells, based on the downregulation of RIP3 and MLKL expression, and suppression of tumor necrosis factor-α and IL-ß synthesis. Additionally, minocycline improved hyperalgesia symptoms in PIPN rats. Overall, this study suggests that PTX-induced polarization of spinal microglia leads to RIP3/MLKL-regulated necroptosis, resulting in PIPN. These findings suggest a potential target for the prevention and treatment of neuropathic pain.


Assuntos
Neuralgia , Paclitaxel , Ratos , Animais , Paclitaxel/efeitos adversos , Microglia/patologia , Necroptose , Minociclina/efeitos adversos , Qualidade de Vida , Neuralgia/induzido quimicamente
11.
Environ Res ; 245: 118056, 2024 Mar 15.
Artigo em Inglês | MEDLINE | ID: mdl-38157958

RESUMO

A good old gateway theory that electronic-cigarettes (e-cigarettes) are widely recognized as safer tobacco substitutes. In actuality, demographics also show that vaping cannibalizes smoking, the best explanation of the data is the "common liability". However, the utilization of e-cigarette products remains a controversial topic at present. Currently, there has been a widespread and substantial growth in e-cigarette use worldwide owing to their endless new flavors and customizable characteristics. Furthermore, e-cigarette has grown widespread among smokers as well as non-smokers, including adolescents and young adults. And some studies have shown that e-cigarette users are at greater risk to start using combustible cigarettes while e-cigarettes use was also observed the potential benefits to people who want to quit smoking or not. Although it is true that e-cigarettes generally contain fewer toxic substances than combustible cigarettes, this does not mean that the chemical composition in e-cigarettes aerosols poses absolutely no risks. While concerns about toxic substances in e-cigarettes and their widespread use in the population are reasonable, it is also crucial to consider that e-cigarettes have been associated with the potential for promoting smoking cessation and the clinically relevant improvements in users with smoking-related pathologies. Meanwhile, there is still short of understanding of the health impacts associated with e-cigarette use. Therefore, in this review, we discussed the health impacts of e-cigarette exposure on oral, nasal, pulmonary, cardiovascular systems and brain. We aspire for this review to change people's previous perceptions of e-cigarettes and provide them with a more balanced perspective. Additionally, we suggest appropriate adjustments on regulation and policy for e-cigarette to gain greater public health benefits.


Assuntos
Sistemas Eletrônicos de Liberação de Nicotina , Produtos do Tabaco , Adolescente , Adulto Jovem , Humanos , Fumar/epidemiologia , Fumar Tabaco , Eletrônica
12.
BMC Womens Health ; 24(1): 379, 2024 Jul 02.
Artigo em Inglês | MEDLINE | ID: mdl-38956558

RESUMO

BACKGROUND: Breast cancer has become a major public health problem in the current society, and its incidence rate ranks the first among Chinese female malignant tumors. This paper once again confirmed the efficacy of lncRNA in tumor regulation by introducing the mechanism of the diagnosis of breast cancer by the MIR497HG/miR-16-5p axis. METHODS: The abnormal expression of MIR497HG in breast cancer was determined by RT-qPCR method, and the correlation between MIR497HG expression and clinicopathological characteristics of breast cancer patients was analyzed via Chi-square test. To understand the diagnostic potential of MIR497HG in breast cancer by drawing the receiver operating characteristic curve (ROC). The overexpressed MIR497HG (pcDNA3.1-MIR497HG) was designed and constructed to explore the regulation of elevated MIR497HG on biological function of BT549 and Hs 578T cells through Transwell assays. Additionally, the luciferase gene reporter assay and Pearson analysis evaluated the targeting relationship of MIR497HG to miR-16-5p. RESULTS: MIR497HG was decreased in breast cancer and had high diagnostic function, while elevated MIR497HG inhibited the migration and invasion of BT549 and Hs 578T cells. In terms of functional mechanism, miR-16-5p was the target of MIR497HG, and MIR497HG reversely regulated the miR-16-5p. miR-16-5p mimic reversed the effects of upregulated MIR497HG on cell biological function. CONCLUSIONS: In general, MIR497HG was decreased in breast cancer, and the MIR497HG/miR-16-5p axis regulated breast cancer tumorigenesis, providing effective insights for the diagnosis of patients.


Assuntos
Neoplasias da Mama , MicroRNAs , RNA Longo não Codificante , Humanos , MicroRNAs/genética , Feminino , Neoplasias da Mama/genética , RNA Longo não Codificante/genética , Linhagem Celular Tumoral , Regulação Neoplásica da Expressão Gênica , Movimento Celular/genética , Pessoa de Meia-Idade , Proliferação de Células/genética
13.
Drug Resist Updat ; 66: 100907, 2023 01.
Artigo em Inglês | MEDLINE | ID: mdl-36527888

RESUMO

The binding of programmed death-1 (PD-1) on the surface of T cells and PD-1 ligand 1 (PD-L1) on tumor cells can prevent the immune-killing effect of T cells on tumor cells and promote the immune escape of tumor cells. Therefore, immune checkpoint blockade targeting PD-1/PD-L1 is a reliable tumor therapy with remarkable efficacy. However, the main challenges of this therapy are low response rate and acquired resistance, so that the outcomes of this therapy are usually unsatisfactory. This review begins with the description of biological structure of the PD-1/PD-L1 immune checkpoint and its role in a variety of cells. Subsequently, the therapeutic effects of immune checkpoint blockers (PD-1 / PD-L1 inhibitors) in various tumors were introduced and analyzed, and the reasons affecting the function of PD-1/PD-L1 were systematically analyzed. Then, we focused on analyzing, sorting out and introducing the possible underlying mechanisms of primary and acquired resistance to PD-1/PD-L1 blockade including abnormal expression of PD-1/PD-L1 and some factors, immune-related pathways, tumor immune microenvironment, and T cell dysfunction and others. Finally, promising therapeutic strategies to sensitize the resistant patients with PD-1/PD-L1 blockade treatment were described. This review is aimed at providing guidance for the treatment of various tumors, and highlighting the drug resistance mechanisms to offer directions for future tumor treatment and improvement of patient prognosis.


Assuntos
Resistencia a Medicamentos Antineoplásicos , Neoplasias , Receptor de Morte Celular Programada 1 , Humanos , Antígeno B7-H1 , Resistência a Medicamentos , Imunoterapia , Microambiente Tumoral
14.
BMC Musculoskelet Disord ; 25(1): 368, 2024 May 10.
Artigo em Inglês | MEDLINE | ID: mdl-38730497

RESUMO

BACKGROUND: This systemic review and meta-analysis aimed to evaluate the clinical outcomes of proximal humeral fracture in elderly patient fixation using locked plate with or without cement augmentation. METHODS: The databases of PubMed, Embase, and Cochrane Library were searched in August 2023 for literature comparing the clinical outcomes of patients with PHFs treated with locked plate alone and locked plate augmented with cement. Data describing study design; level of evidence; inclusion criteria; demographic information; final follow-up; revision rate; implant failure rate; avascular necrosis rate; total complication rate; constant score; and disability of arm, shoulder, and hand (DASH) score were collected. RESULTS: Eight studies (one randomized-controlled trial and seven observational studies), involving 664 patients, were identified. Compared with locked plates alone, using cement-augmented locked plates reduced the implant failure rate (odds ratio (OR) = 0.19; 95% confidence interval (CI) 0.10-0.39; P < 0.0001) and total complication rate (OR = 0.45; 95% CI 0.29-0.69; P = 0.0002) and improved DASH scores (mean difference (MD) = 2.99; 95% CI 1.00-4.98; P = 0.003). However, there was no significant difference in clinical outcomes, including revision rate, avascular necrosis rate, and constant score. CONCLUSION: In this review and meta-analysis, fixation of the PHFs in elderly patients using locked plates with or without cement augmentation has no significant difference in revision rate, but the implant failure and total complication rates may be lesser on using the cement-augmented locked plate for fixation than on using a locked plate alone. Good results are expected for most patients treated with this technique. TRIAL REGISTRATION: The Preferred Reporting Items for Systematic Reviews and Meta-Analyses (PRISMA)21 guidelines were followed to conduct this systematic review and meta-analysis and was registered as a protocol in PROSPERO (CRD42022318798).


Assuntos
Cimentos Ósseos , Placas Ósseas , Fixação Interna de Fraturas , Fraturas do Ombro , Humanos , Fraturas do Ombro/cirurgia , Fraturas do Ombro/diagnóstico por imagem , Fixação Interna de Fraturas/instrumentação , Fixação Interna de Fraturas/métodos , Fixação Interna de Fraturas/efeitos adversos , Cimentos Ósseos/uso terapêutico , Cimentos Ósseos/efeitos adversos , Idoso , Resultado do Tratamento , Idoso de 80 Anos ou mais , Complicações Pós-Operatórias/etiologia , Complicações Pós-Operatórias/epidemiologia , Reoperação
15.
Proc Natl Acad Sci U S A ; 118(8)2021 02 23.
Artigo em Inglês | MEDLINE | ID: mdl-33602814

RESUMO

The ubiquitin E3 ligase Bre1-mediated H2B monoubiquitination (H2Bub) is essential for proper DNA replication and repair in eukaryotes. Deficiency in H2Bub causes genome instability and cancer. How the Bre1-H2Bub pathway is evoked in response to DNA replication or repair remains unknown. Here, we identify that the single-stranded DNA (ssDNA) binding factor RPA acts as a key mediator that couples Bre1-mediated H2Bub to DNA replication and repair in yeast. We found that RPA interacts with Bre1 in vitro and in vivo, and this interaction is stimulated by ssDNA. This association ensures the recruitment of Bre1 to replication forks or DNA breaks but does not affect its E3 ligase activity. Disruption of the interaction abolishes the local enrichment of H2Bub, resulting in impaired DNA replication, response to replication stress, and repair by homologous recombination, accompanied by increased genome instability and DNA damage sensitivity. Notably, we found that RNF20, the human homolog of Bre1, interacts with RPA70 in a conserved mode. Thus, RPA functions as a master regulator for the spatial-temporal control of H2Bub chromatin landscape during DNA replication and recombination, extending the versatile roles of RPA in guarding genome stability.


Assuntos
Reparo do DNA , Replicação do DNA , Histonas/metabolismo , Proteína de Replicação A/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo , DNA de Cadeia Simples , Histonas/genética , Recombinação Homóloga , Metanossulfonato de Metila/toxicidade , Domínios e Motivos de Interação entre Proteínas/genética , Proteína de Replicação A/genética , Saccharomyces cerevisiae/efeitos dos fármacos , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/metabolismo , Proteínas de Saccharomyces cerevisiae/genética , Ubiquitina-Proteína Ligases/genética , Ubiquitina-Proteína Ligases/metabolismo , Ubiquitinação
16.
Proc Natl Acad Sci U S A ; 118(25)2021 06 22.
Artigo em Inglês | MEDLINE | ID: mdl-34140406

RESUMO

Single-stranded DNA (ssDNA) covered with the heterotrimeric Replication Protein A (RPA) complex is a central intermediate of DNA replication and repair. How RPA is regulated to ensure the fidelity of DNA replication and repair remains poorly understood. Yeast Rtt105 is an RPA-interacting protein required for RPA nuclear import and efficient ssDNA binding. Here, we describe an important role of Rtt105 in high-fidelity DNA replication and recombination and demonstrate that these functions of Rtt105 primarily depend on its regulation of RPA. The deletion of RTT105 causes elevated spontaneous DNA mutations with large duplications or deletions mediated by microhomologies. Rtt105 is recruited to DNA double-stranded break (DSB) ends where it promotes RPA assembly and homologous recombination repair by gene conversion or break-induced replication. In contrast, Rtt105 attenuates DSB repair by the mutagenic single-strand annealing or alternative end joining pathway. Thus, Rtt105-mediated regulation of RPA promotes high-fidelity replication and recombination while suppressing repair by deleterious pathways. Finally, we show that the human RPA-interacting protein hRIP-α, a putative functional homolog of Rtt105, also stimulates RPA assembly on ssDNA, suggesting the conservation of an Rtt105-mediated mechanism.


Assuntos
Reparo do DNA , Replicação do DNA , Proteínas de Ligação a RNA/metabolismo , Proteína de Replicação A/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo , Saccharomyces cerevisiae/metabolismo , Transporte Ativo do Núcleo Celular , Proteínas de Transporte/metabolismo , Núcleo Celular/metabolismo , Quebras de DNA de Cadeia Dupla , DNA de Cadeia Simples/metabolismo , Conversão Gênica , Deleção de Genes , Duplicação Gênica , Humanos , Modelos Biológicos , Ligação Proteica , Rad51 Recombinase/metabolismo
17.
Ecotoxicol Environ Saf ; 279: 116467, 2024 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-38761497

RESUMO

BACKGROUND: Although the changes of mitogen-activated protein kinase (MAPK) pathway in the central nervous system (CNS) induced by excessive fluoride has been confirmed by our previous findings, the underlying mechanism(s) of the action remains unclear. Here, we investigate the possibility that microRNAs (miRNAs) are involved in the aspect. METHODS: As a model of chronic fluorosis, SD rats received different concentrations of fluoride in their drinking water for 3 or 6 months and SH-SY5Y cells were exposed to fluoride. Literature reviews and bioinformatics analyses were used to predict and real-time PCR to measure the expression of 12 miRNAs; an algorithm-based approach was applied to identify multiply potential target-genes and pathways; the dual-luciferase reporter system to detect the association of miR-132-3p with MAPK1; and fluorescence in situ hybridization to detect miR-132-3p localization. The miR-132-3p inhibitor or mimics or MAPK1 silencing RNA were transfected into cultured cells. Expression of protein components of the MAPK pathway was assessed by immunofluorescence or Western blotting. RESULTS: In the rat hippocampus exposed with high fluoride, ten miRNAs were down-regulated and two up-regulated. Among these, miR-132-3p expression was down-regulated to the greatest extent and MAPK1 level (selected from the 220 genes predicted) was corelated with the alteration of miR-132-3p. Furthermore, miR-132-3p level was declined, whereas the protein levels MAPK pathway components were increased in the rat brains and SH-SY5Y cells exposed to high fluoride. MiR-132-3p up-regulated MAPK1 by binding directly to its 3'-untranslated region. Obviously, miR-132-3p mimics or MAPK1 silencing RNA attenuated the elevated expressions of the proteins components of the MAPK pathway induced by fluorosis in SH-SY5Y cells, whereas an inhibitor of miR-132-3p just played the opposite effect. CONCLUSION: MiR-132-3p appears to modulate the changes of MAPK signaling pathway in the CNS associated with chronic fluorosis.


Assuntos
Fluoretos , MicroRNAs , Proteína Quinase 1 Ativada por Mitógeno , Ratos Sprague-Dawley , MicroRNAs/genética , Animais , Ratos , Fluoretos/toxicidade , Humanos , Proteína Quinase 1 Ativada por Mitógeno/metabolismo , Sistema de Sinalização das MAP Quinases/efeitos dos fármacos , Encéfalo/efeitos dos fármacos , Encéfalo/metabolismo , Masculino , Linhagem Celular Tumoral
18.
J Shoulder Elbow Surg ; 33(5): 1040-1049, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-37844829

RESUMO

BACKGROUND: Giant cell tumors of bone (GCTBs) are rare, aggressive tumors, and the proximal humerus is a relatively rare location for GCTBs; limited evidence exists on which surgical approaches and reconstruction techniques are optimal. In the largest case series to date, we evaluated the recurrence rate of proximal humeral GCTBs and the functional outcomes of different resection and reconstruction options in this multicenter study. METHODS: All 51 patients included in this study received initial surgical treatment for proximal humeral GCTBs from January 2007 to December 2020, with a minimum 2-year follow-up period. Local recurrence and functional outcomes were statistically analyzed in relation to demographic, clinical, and primary surgical variables. Functional outcomes were reported by patients and were assessed by the Musculoskeletal Tumor Society score and QuickDASH instrument (shortened version of the Disabilities of the Arm, Shoulder and Hand instrument). RESULTS: The mean follow-up period was 81.5 months (range, 30-191 months), and the overall recurrence rate was 17.6% (9 of 51 patients). The majority of recurrences (n = 7) occurred in the first 2 years of follow-up. The intralesional curettage group (n = 23) showed a statistically significant difference in the recurrence rate compared with the en bloc resection group (n = 28) (34.8% vs. 3.6%, P = .007). Among shoulders receiving en bloc resection, 16 were reconstructed with hemiarthroplasty; 8, reverse total shoulder arthroplasty (rTSA) with allograft-prosthetic composite (APC) reconstruction; and 4, arthrodesis. On the basis of intention-to-treat analysis, the mean functional Musculoskeletal Tumor Society scores of the groups undergoing curettage, rTSA with APC, hemiarthroplasty, and arthrodesis were 26.0 ± 3.1, 26.0 ± 1.7, 20.3 ± 2.8, and 22.5 ± 1.3, respectively (P < .001 [with P < .001 for curettage vs. hemiarthroplasty and P = .004 for rTSA with APC vs. hemiarthroplasty]) and the mean QuickDASH scores were 14.0 ± 11.0, 11.6 ± 4.5, 33.1 ± 11.8, and 21.6 ± 4.7, respectively (P < .001 [with P < .001 for curettage vs. hemiarthroplasty and P = .003 for rTSA with APC vs. hemiarthroplasty]). CONCLUSIONS: On the basis of our data, en bloc resection followed by reverse shoulder arthroplasty showed a lower recurrence rate and no significant difference in functional outcome scores for proximal humeral GCTBs compared with intralesional curettage. Therefore, we believe that rTSA with APC may be reasonable for the initial treatment of proximal humeral GCTBs.


Assuntos
Artroplastia do Ombro , Tumores de Células Gigantes , Hemiartroplastia , Fraturas do Ombro , Articulação do Ombro , Humanos , Artroplastia do Ombro/métodos , Estudos Retrospectivos , Ombro/cirurgia , Resultado do Tratamento , Reoperação/métodos , Úmero/cirurgia , Articulação do Ombro/cirurgia , Curetagem , Tumores de Células Gigantes/cirurgia , Aloenxertos/cirurgia , Fraturas do Ombro/cirurgia
19.
Sensors (Basel) ; 24(12)2024 Jun 07.
Artigo em Inglês | MEDLINE | ID: mdl-38931492

RESUMO

A staggered vane-shaped slot-line slow-wave structure (SV-SL SWS) for application in W-band traveling wave tubes (TWTs) is proposed in this article. In contrast to the conventional slot-line SWSs with dielectric substrates, the proposed SWS consists only of a thin metal sheet inscribed with periodic grooves and two half-metal enclosures, which means it can be easily manufactured and assembled and has the potential for mass production. This SWS not only solves the problem of the dielectric loading effect but also improves the heat dissipation capability of such structures. Meanwhile, the SWS design presented here covers a -15 dB S11 frequency range from 87.5 to 95 GHz. The 3-D simulation for a TWT based on the suggested SWS is also investigated. Under dual-electron injection conditions with a total voltage of 17.2 kV and a total current of 0.3 A, the maximum output power at 90 GHz is 200 W, with a 3 dB bandwidth up to 4 GHz. With a good potential for fabrication using microfabrication techniques, this structure can be a good candidate for millimeter-wave TWT applications.

20.
Semin Cancer Biol ; 78: 90-103, 2022 01.
Artigo em Inglês | MEDLINE | ID: mdl-33979674

RESUMO

It is increasingly appreciated that cancer cell heterogeneity and plasticity constitute major barriers to effective clinical treatments and long-term therapeutic efficacy. Research in the past two decades suggest that virtually all treatment-naive human cancers harbor subsets of cancer cells that possess many of the cardinal features of normal stem cells. Such stem-like cancer cells, operationally defined as cancer stem cells (CSCs), are frequently quiescent and dynamically change and evolve during tumor progression and therapeutic interventions. Intrinsic tumor cell heterogeneity is reflected in a different aspect in that tumors also harbor a population of slow-cycling cells (SCCs) that are not in the proliferative cell cycle and thus are intrinsically refractory to anti-mitotic drugs. In this Perspective, we focus our discussions on SCCs in cancer and on various methodologies that can be employed to enrich and purify SCCs, compare the similarities and differences between SCCs, CSCs and cancer cells undergoing EMT, and present evidence for the involvement of SCCs in surviving anti-neoplastic treatments, mediating tumor relapse, maintaining tumor dormancy and mediating metastatic dissemination. Our discussions make it clear that an in-depth understanding of the biological properties of SCCs in cancer will be instrumental to developing new therapeutic strategies to prevent tumor relapse and distant metastasis.


Assuntos
Ciclo Celular , Neoplasias/etiologia , Neoplasias/metabolismo , Microambiente Tumoral , Animais , Gerenciamento Clínico , Suscetibilidade a Doenças , Resistencia a Medicamentos Antineoplásicos , Humanos , Metástase Neoplásica , Neoplasias/patologia , Neoplasias/terapia , Prognóstico , Recidiva
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa