Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Ecotoxicol Environ Saf ; 280: 116553, 2024 Jul 15.
Artigo em Inglês | MEDLINE | ID: mdl-38850699

RESUMO

The incidence of nonalcoholic steatohepatitis (NASH) is related with perfluorooctane sulfonate (PFOS), yet the mechanism remains ill-defined. Mounting evidence suggests that ferroptosis plays a crucial role in the initiation of NASH. In this study, we used mice and human hepatocytes L-02 to investigate the role of ferroptosis in PFOS-induced NASH and the effect and molecular mechanism of PFOS on liver ferroptosis. We found here that PFOS caused NASH in mice, and lipid accumulation and inflammatory response in the L-02 cells. PFOS induced hepatic ferroptosis in vivo and in vitro, as evidenced by the decrease in glutathione peroxidase 4 (GPX4), and the increases in cytosolic iron, acyl-CoA synthetase long-chain family member 4 (ACSL4) and lipid peroxidation. In the PFOS-treated cells, the increases in the inflammatory factors and lipid contents were reversed by ferroptosis inhibitor. PFOS-induced ferroptosis was relieved by autophagy inhibitor. The expression of mitochondrial calcium uniporter (MCU) was accelerated by PFOS, leading to subsequent mitochondrial calcium accumulation, and inhibiting autophagy reversed the increase in MCU. Inhibiting mitochondrial calcium reversed the variations in GPX4 and cytosolic iron, without influencing the change in ACSL4, induced by PFOS. MCU interacted with ACSL4 and the siRNA against MCU reversed the changes in ACSL4,GPX4 and cytosolic iron systemically. This study put forward the involvement of hepatic ferroptosis in PFOS-induced NASH and identified MCU as the mediator of the autophagy-dependent ferroptosis.


Assuntos
Ácidos Alcanossulfônicos , Autofagia , Cálcio , Coenzima A Ligases , Ferroptose , Fluorocarbonos , Hepatopatia Gordurosa não Alcoólica , Ferroptose/efeitos dos fármacos , Fluorocarbonos/toxicidade , Animais , Ácidos Alcanossulfônicos/toxicidade , Camundongos , Hepatopatia Gordurosa não Alcoólica/induzido quimicamente , Hepatopatia Gordurosa não Alcoólica/patologia , Autofagia/efeitos dos fármacos , Coenzima A Ligases/metabolismo , Humanos , Cálcio/metabolismo , Canais de Cálcio/metabolismo , Masculino , Camundongos Endogâmicos C57BL , Mitocôndrias/efeitos dos fármacos , Mitocôndrias/metabolismo , Linhagem Celular , Hepatócitos/efeitos dos fármacos
2.
Mitochondrion ; 62: 128-138, 2022 01.
Artigo em Inglês | MEDLINE | ID: mdl-34856389

RESUMO

Due to the rapid rise in the prevalence of chronic metabolic disease, more and more clinicians and basic medical researchers focus their eyesight on insulin resistance (IR), an early and central event of metabolic diseases. The occurrence and development of IR are primarily caused by excessive energy intake and reduced energy consumption. Liver is the central organ that controls glucose homeostasis, playing a considerable role in systemic IR. Decreased capacity of oxidative metabolism and mitochondrial dysfunction are being blamed as the direct reason for the development of IR. Mitochondrial Ca2+ plays a fundamental role in maintaining proper mitochondrial function and redox stability. The maintaining of mitochondrial Ca2+ homeostasis requires the cooperation of ion channels in the inner and outer membrane of mitochondria, such as mitochondrial calcium uniporter complex (MCUC) and voltage-dependent anion channels (VDACs). In addition, the crosstalk between the endoplasmic reticulum (ER), lysosome and plasma membrane with mitochondria is also significant for mitochondrial calcium homeostasis, which is responsible for an efficient network of cellular Ca2+ signaling. Here, we review the recent progression in the research about the regulation factors for mitochondrial Ca2+ and how the dysregulation of mitochondrial Ca2+ homeostasis is involved in the pathogenesis of hepatic IR, providing a new perspective for further exploring the role of ion in the onset and development of IR.


Assuntos
Cálcio/metabolismo , Homeostase/fisiologia , Resistência à Insulina/fisiologia , Fígado/metabolismo , Mitocôndrias/metabolismo , Transporte Biológico/fisiologia , Humanos
3.
Sci Total Environ ; 825: 153933, 2022 Jun 15.
Artigo em Inglês | MEDLINE | ID: mdl-35192817

RESUMO

Perfluorooctane sulfonate (PFOS), one kind of persistent organic pollutants, is associated with insulin resistance (IR) in general population. However, the exact mechanism is still obscure. In this study, we found that 50 µM PFOS caused IR in L-02 hepatocytes after 1 h, and induced autophagy and mitochondrial calcium (Ca2+) accumulation as early as 0.5 h. Inhibiting autophagy relieved mitochondrial Ca2+ overload and then reversed IR. Mitochondria were aggregated at cell periphery, and extracellular Ca2+ from IP3R2 on the plasma membrane, rather than endoplasmic reticulum Ca2+, was the priority source of mitochondrial Ca2+ uptake at early stages of PFOS exposure. Furthermore, we discovered that the linkage connecting autophagy and mitochondrial Ca2+ response was detyrosinated α-tubulin, which autophagy-dependently ascended, interacted with VDAC1 and enhanced the formation of IP3R2-VDAC1-MICU1 complex. Consistently, PFOS caused IR, activated autophagy, induced mitochondrial Ca2+ overload, increased the level of detyrosinated α-tubulin, and promoted the formation of IP3R2-VDAC1-MICU1 complex in the liver of C57BL/6J mice exposed to 2.5 mg/kg/day PFOS for 6 weeks. This study clarified that autophagy and mitochondrial Ca2+ accumulation were the early and triggering event that caused PFOS-related IR, also unveiled a novel mechanism regulating mitochondrial Ca2+ homeostasis.


Assuntos
Proteínas de Transporte de Cátions , Resistência à Insulina , Ácidos Alcanossulfônicos , Animais , Autofagia , Cálcio/metabolismo , Proteínas de Ligação ao Cálcio/metabolismo , Proteínas de Transporte de Cátions/metabolismo , Fluorocarbonos , Humanos , Fígado/metabolismo , Camundongos , Camundongos Endogâmicos C57BL , Mitocôndrias/metabolismo , Proteínas de Transporte da Membrana Mitocondrial/metabolismo , Tubulina (Proteína)/metabolismo , Canal de Ânion 1 Dependente de Voltagem/metabolismo
4.
Chem Biol Interact ; 358: 109899, 2022 May 01.
Artigo em Inglês | MEDLINE | ID: mdl-35305974

RESUMO

Increasing evidences indicate the vital role of exosomes-mediated intercellular communication in the pathogenesis of liver fibrosis. However, the underlying mechanisms are still not clearly defined. In this study, we found that citreoviridin (CIT), a mycotoxin and ectopic ATP synthase (e-ATPS) inhibitor, induced liver fibrosis in mice. The exosomes derived from CIT-treated L-02 hepatocytes activated hepatic stellate cells (HSC) LX-2. With exosomal small RNA sequencing, we found 156 differentially expressed miRNAs in the exosomes from CIT-treated L-02 cells, and the predicted target genes of exosomal miRNAs were enriched in calcium signaling pathway. The exosomes from CIT-treated L-02 cells induced mitochondrial calcium accumulation in LX-2 cells. And pharmacological inhibition of mitochondrial calcium uptake relieved exosomes-activated fibrogenic response in LX-2 cells. The miR-181a-2-3p that was predicted to target-regulate mitochondrial calcium uptake 1 (MICU1) was significantly increased in the exosomes from CIT-treated L-02 cells. Exosomes-induced reduction of MICU1, mitochondrial calcium overload and activation of LX-2 cells were reversed by AntagomiR-181a-2-3p. In this study, we pointed out that exosomal miR-181a-2-3p from CIT-treated hepatocytes induced mitochondrial calcium accumulation and activated HSC subsequently through inhibiting the expression of MICU1, shedding new light on the mechanism underlying liver fibrosis and CIT hepatotoxicity.


Assuntos
Cálcio , Células Estreladas do Fígado , Cirrose Hepática , MicroRNAs , Mitocôndrias Hepáticas , Animais , Aurovertinas/farmacologia , Cálcio/metabolismo , Proteínas de Ligação ao Cálcio/metabolismo , Exossomos/metabolismo , Células Estreladas do Fígado/efeitos dos fármacos , Células Estreladas do Fígado/metabolismo , Hepatócitos/efeitos dos fármacos , Hepatócitos/metabolismo , Cirrose Hepática/induzido quimicamente , Cirrose Hepática/metabolismo , Camundongos , MicroRNAs/genética , MicroRNAs/metabolismo , Mitocôndrias Hepáticas/efeitos dos fármacos , Mitocôndrias Hepáticas/metabolismo , Proteínas de Transporte da Membrana Mitocondrial/metabolismo , Transdução de Sinais/genética
5.
Food Chem Toxicol ; 157: 112540, 2021 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-34500008

RESUMO

Perfluorooctane sulfonate (PFOS) is one kind of persistent organic pollutants. In previous study, we found that PFOS induced autophagy-dependent lysosomal membrane permeabilization (LMP) in hepatocytes, and siRNA against lysosomal permease spinster 1 (SPNS1) relieved PFOS-induced LMP. However, whether and how SPNS1 functioned as the link between autophagy and LMP was still not defined. In this study, we constructed a stable cell line expressing high levels of SPNS1. We found that SPNS1 interacted specifically with α-tubulin of tyrosinated isotype by pull-down assay. After treatment with PFOS, the level of tyrosinated α-tubulin was autophagy-dependently decreased. SPNS1-tyrosinated α-tubulin interaction was disrupted subsequently, which led to LMP eventually. We also found that stable high-expression of SPNS1 in hepatocytes accelerated lysosomal acidification, and deteriorated PFOS-induced LMP. This study pointed out that SPNS1-tyrosinated α-tubulin interaction mediated the cross-talk between autophagy and LMP induced by PFOS, shedding new light on the mechanism of PFOS hepatotoxicity.


Assuntos
Proteínas Adaptadoras de Transdução de Sinal/metabolismo , Autofagia/efeitos dos fármacos , Fluorocarbonos/farmacologia , Lisossomos/efeitos dos fármacos , Proteínas de Membrana/metabolismo , Tubulina (Proteína)/metabolismo , Western Blotting , Células Hep G2/efeitos dos fármacos , Humanos , Espectrometria de Massas , Membranas/efeitos dos fármacos , Permeabilidade/efeitos dos fármacos , Tirosina/metabolismo
6.
Mitochondrion ; 54: 122-127, 2020 09.
Artigo em Inglês | MEDLINE | ID: mdl-32861876

RESUMO

Intercellular transfer of mitochondria and mitochondrial components through extracellular vesicles (EVs), including microvesicles and exosomes, is an area of intense interest. The cargos that are carried by EVs define their biological activities. Mitochondria are in charge of bioenergetics and maintenance of cell viability. Increasing evidences indicate the presence of intact mitochondria or mitochondrial components in EVs, which raises many questions, how they are engulfed into EVs and what do they do? Here, we present what is currently known about the presence and function of various mitochondrial constituent in EVs. We also review current understanding about how and why mitochondrial components are encapsulated into EVs.


Assuntos
Vesículas Extracelulares/metabolismo , Mitocôndrias/fisiologia , Animais , Sobrevivência Celular , DNA Mitocondrial/genética , Metabolismo Energético , Vesículas Extracelulares/genética , Humanos
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa