Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 11 de 11
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Materials (Basel) ; 16(10)2023 May 19.
Artigo em Inglês | MEDLINE | ID: mdl-37241479

RESUMO

The paper presents the possibilities of heat treatment of low-density structural steels usable for springs. Heats have been prepared with chemical compositions 0.7 wt% C and 1 wt% C, as well as 7 wt% Al and 5 wt% Al. Samples were prepared from ingots weighing approximately 50 kg. These ingots were homogenised, then forged, and hot rolled. Primary transformation temperatures and specific gravity values were determined for these alloys. For low-density steels, there usually needs to be a solution to achieve the required ductility values. At cooling rates of 50 °C/s and 100 °C/s, the kappa phase is not present. A SEM analysed the fracture surfaces for the presence of transit carbides during tempering. The martensite start temperatures ranged from 55-131 °C, depending on the chemical composition. The densities of the measured alloys were 7.08 g/cm3 and 7.18 g/cm3, respectively. Therefore, heat treatment variation was carried out to achieve a tensile strength of over 2500 MPa, with ductility of almost 4%. Hardnesses above 60 HRC were achieved for 1 wt% C heats using the appropriate heat treatment.

2.
Materials (Basel) ; 16(12)2023 Jun 07.
Artigo em Inglês | MEDLINE | ID: mdl-37374411

RESUMO

Lab-scale investigations on the processing of small powder volumes are of special importance for applications in additive manufacturing (AM) techniques. Due to the technological importance of high-silicon electrical steel, and the increasing need for optimal near-net-shape AM processing, the aim of this study was to investigate the thermal behavior of a high-alloy Fe-Si powder for AM. An Fe-6.5wt%Si spherical powder was characterized using chemical, metallographic, and thermal analyses. Before thermal processing, the surface oxidation of the as-received powder particles was observed by metallography and confirmed by microanalysis (FE-SEM/EDS). The melting, as well as the solidification behavior of the powder, was evaluated using differential scanning calorimetry (DSC). Due to the remelting of the powder, a significant loss of silicon occurred. The morphology and microstructure analyses of the solidified Fe-6.5wt%Si revealed the formation of needle-shaped eutectics in a ferrite matrix. The presence of a high-temperature phase of silica was confirmed by the Scheil-Gulliver solidification model for the ternary model Fe-6.5wt%Si-1.0wt%O alloy. In contrast, for the binary model Fe-6.5wt%Si alloy, thermodynamic calculations predict the solidification exclusively with the precipitation of b.c.c. ferrite. The presence of high-temperature eutectics of silica in the microstructure is a significant weakness for the efficiency of the magnetization processes of soft magnetic materials from the Fe-Si alloy system.

3.
Materials (Basel) ; 16(6)2023 Mar 16.
Artigo em Inglês | MEDLINE | ID: mdl-36984270

RESUMO

This research studies the influence of the copper alloying of medium-carbon steel on mechanical properties after quenching and tempering at 500 °C. The microstructure was characterised using SEM, EBSD, TEM, and XRD analysis. The mechanical properties were comprehensively investigated using hardness measurements, tensile and Charpy impact tests and solid solution, grain boundary, dislocation, and precipitation strengthening contributions were estimated. Higher yield strength for Cu-alloyed steel was confirmed at about 35-73 MPa. The precipitation strengthening contribution from Cu precipitates in the range of 11-49 MPa was calculated. The interaction between Cu precipitates and dislocations retards the decrease in dislocation density. Similar values of effective grain size of martensite crystals were measured for Cu-alloyed and Cu-free steel as well. Copper alloyed steel exhibited significantly deteriorated impact toughness, total plastic elongation, and reduction of area. The size of Cu precipitates ranged from 8.3 nm after tempering at 500 °C for 6 h to 13.9 nm after tempering for 48 h.

4.
Materials (Basel) ; 16(5)2023 Mar 06.
Artigo em Inglês | MEDLINE | ID: mdl-36903242

RESUMO

The present work aimed to study the properties of medium-carbon steel during tempering treatment and to present the strength increase of medium-carbon spring steels by strain-assisted tempering (SAT). The effect of double-step tempering and double-step tempering with rotary swaging, also known as SAT, on the mechanical properties and microstructure was investigated. The main goal was to achieve a further enhancement of the strength of medium-carbon steels using SAT treatment. The microstructure consists of tempered martensite with transition carbides in both cases. The yield strength of the DT sample is 1656 MPa, while that of the SAT sample is about 400 MPa higher. On the contrary, plastic properties such as the elongation and reduction in area have lower values after SAT processing, about 3% and 7%, respectively, compared to the DT treatment. Grain boundary strengthening from low-angle grain boundaries can be attributed to the increase in strength. Based on X-ray diffraction analysis, a lower dislocation strengthening contribution was determined for the SAT sample compared to the double-step tempered sample.

5.
Bioact Mater ; 28: 132-154, 2023 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-37250863

RESUMO

Magnesium (Mg) alloys have become a potential material for orthopedic implants due to their unnecessary implant removal, biocompatibility, and mechanical integrity until fracture healing. This study examined the in vitro and in vivo degradation of an Mg fixation screw composed of Mg-0.45Zn-0.45Ca (ZX00, in wt.%). With ZX00 human-sized implants, in vitro immersion tests up to 28 days under physiological conditions, along with electrochemical measurements were performed for the first time. In addition, ZX00 screws were implanted in the diaphysis of sheep for 6, 12, and 24 weeks to assess the degradation and biocompatibility of the screws in vivo. Using scanning electron microscopy (SEM) coupled with energy dispersive X-ray spectroscopy (EDX), micro-computed tomography (µCT), X-ray photoelectron spectroscopy (XPS), and histology, the surface and cross-sectional morphologies of the corrosion layers formed, as well as the bone-corrosion-layer-implant interfaces, were analyzed. Our findings from in vivo testing demonstrated that ZX00 alloy promotes bone healing and the formation of new bone in direct contact with the corrosion products. In addition, the same elemental composition of corrosion products was observed for in vitro and in vivo experiments; however, their elemental distribution and thicknesses differ depending on the implant location. Our findings suggest that the corrosion resistance was microstructure-dependent. The head zone was the least corrosion-resistant, indicating that the production procedure could impact the corrosion performance of the implant. In spite of this, the formation of new bone and no adverse effects on the surrounding tissues demonstrated that the ZX00 is a suitable Mg-based alloy for temporary bone implants.

6.
Materials (Basel) ; 15(23)2022 Nov 24.
Artigo em Inglês | MEDLINE | ID: mdl-36499874

RESUMO

Zinc materials are considered promising candidates for bioabsorbable medical devices used for the fixation of broken bones or stents. Materials for these applications must meet high mechanical property requirements. One of the ways to fulfil these demands is related to microstructure refinement, particularly the decrease in grain size. In the present work, we combine two powder metallurgy techniques (mechanical alloying-MA, and spark plasma sintering-SPS) to prepare Zn-1Mg-0.5Sr nanograin material. The microstructure of compacted material consisted of Zn grains and particles of Mg2Zn11 intermetallic phases from 100 to 500 nm in size, which resulted in high values of hardness and a compressive strength equal to 86 HV1 and 327 MPa, respectively. In this relation, the combination of the suggested techniques provides an innovative way to form extremely fine microstructures without significant coarsening during powder compaction at increased temperatures.

7.
Materials (Basel) ; 15(20)2022 Oct 20.
Artigo em Inglês | MEDLINE | ID: mdl-36295418

RESUMO

Spring steels are typical materials where enhancement of mechanical properties can save considerable mass for transport vehicles, in this way the consumption of fuel or electric energy can be decreased. A drastic change in both the resulting microstructure and mechanical properties could be achieved due to the inclusion of strain into the tempering process after quenching. The strain assisted tempering (SAT) technology was applied, i.e., the process of quenching and following a sequence of tempering operations alternating with strain operations. After the first tempering, controlled deformation by rotary swaging was carried out with a strain of 17% (strain rate is about 120 s-1). Considerably higher strength parameters after SAT compared to conventional quenching and tempering (QT) technology were nevertheless accompanied by enhanced notch toughness at the same time by the decrease of elongation and reduction of area. However, by optimizing the process it is was also possible to achieve acceptable values for those parameters. Remarkable differences are visible in resulting microstructures of compared samples, which were revealed by metallographic analysis and X-ray diffraction measurement. While the standard microstructure of tempered martensite with transition carbides was observed after QT processing, carbideless islands with nanotwins occurred in martensitic laths after SAT processing.

8.
Sci Rep ; 11(1): 19506, 2021 09 30.
Artigo em Inglês | MEDLINE | ID: mdl-34593952

RESUMO

The key feature of Fe-Mn alloys is gradual degradability and non-magneticity, with laser power bed fusion (LPBF) parameters influencing the microstructure and chemical composition. Our study focuses on biodegradable Fe-Mn alloys produced by mechanically mixing pure metal feedstock powders as part of the LPBF process. The Mn content and, consequently, the γ-ε phase formation in LPBF samples are directly correlated with an adapted energy-density (E) equation by combining the five primary LPBF parameters. We varied laser power (P) in a range of 200-350 W and scanning speed at 400 and 800 mm/s, and a comprehensive study was performed on samples with similar E. The study also showed an almost linear correlation between the LPBF's laser power and the material's hardness and porosity. The corrosion resistance was significantly reduced (from 13 to 400 µm/year) for the LPBF samples compared to a conventionally produced sample due to the dual-phase microstructure, increased porosity and other defects. The static immersion test showed that the process parameters greatly influence the quantity of oxides and the distribution of their diameters in the LPBF samples and, therefore, their corrosion stability. The most challenging part of the study was reducing the amount of ε phase relative to γ phase to increase the non-magnetic properties of the LPBF samples.

9.
Materials (Basel) ; 14(23)2021 Nov 30.
Artigo em Inglês | MEDLINE | ID: mdl-34885499

RESUMO

Laser-powder bed fusion (LPBF) is one of the preferred techniques for producing Co-Cr metal structures for dental prosthodontic appliances. However, there is generally insufficient information about material properties related to the production process and parameters. This study was conducted on samples produced from three different commercially available Co-Cr dental alloys produced on three different LPBF machines. Identically prepared samples were used for tensile, three-point bending, and toughness tests. Light microscopy (LM), scanning electron microscopy (SEM), and electron backscatter diffraction (EBSD) analyses of microstructure were performed after testing. Differences were observed in microstructures, which reflected statistically significant differences in mechanical properties (one-way analysis of variance (ANOVA) and Scheffé post hoc test (α = 0.05)). The material produced on the 3D Systems DMP Dental 100 had 24 times greater elongation ε than the material produced on the Sysma MySint 100 device and the EOS M100 machine. On the other hand, the material produced on the EOS M100 had significantly higher hardness (HV0.2) than the other two produced materials. However, the microstructure of the Sysma specimens with its morphology deviates considerably from the studied group. LPBF-prepared Co-Cr dental alloys demonstrated significant differences in their microstructures and, consequently, mechanical properties.

10.
Biofouling ; 25(6): 481-93, 2009.
Artigo em Inglês | MEDLINE | ID: mdl-19373571

RESUMO

Fouling-release coatings were prepared from blends of a fluorinated/siloxane copolymer with a poly(dimethyl siloxane) (PDMS) matrix in order to couple the low modulus character of PDMS with the low surface tension typical for fluorinated polymers. The content of the surface-active copolymer was varied in the blend over a broad range (0.15-10 wt % with respect to PDMS). X-ray photoelectron spectroscopy depth profiling analyses were performed on the coatings to establish the distribution of specific chemical constituents throughout the coatings, and proved enrichment in fluorine of the outermost layers of the coating surface. Addition of the fluorinated/siloxane copolymer to the PDMS matrix resulted in a concentration-dependent decrease in settlement of barnacle, Balanus amphitrite, cyprids. The release of young plants of Ulva, a soft fouling species, and young barnacles showed that adhesion strength on the fluorinated/siloxane copolymer was significantly lower than the siloxane control. However, differences in adhesion strength were not directly correlated with the concentration of copolymer in the blends.


Assuntos
Flúor , Polímeros , Siloxanas , Thoracica/efeitos dos fármacos , Ulva/efeitos dos fármacos , Adesividade , Animais , Dimetilpolisiloxanos/síntese química , Dimetilpolisiloxanos/química , Dimetilpolisiloxanos/farmacologia , Flúor/química , Flúor/farmacologia , Polímeros/síntese química , Polímeros/química , Polímeros/farmacologia , Siloxanas/química , Siloxanas/farmacologia , Propriedades de Superfície , Thoracica/fisiologia , Ulva/fisiologia
11.
Biofouling ; 25(1): 55-67, 2009.
Artigo em Inglês | MEDLINE | ID: mdl-18855197

RESUMO

SiO(x)-like coatings were deposited on glass slides from a hexamethylsiloxane precursor by plasma-assisted CVD (PACVD). Surface energies (23.1-45.7 mJ m(-1)) were correlated with the degree of surface oxidation and hydrocarbon contents. Tapping mode AFM revealed a range of surface topologies with Ra values 1.55-3.16 nm and RMS roughness 1.96-4.11 nm. Settlement of spores of the green alga Ulva was significantly less, and detachment under shear significantly more on the lowest surface energy coatings. Removal of young plants (sporelings) of Ulva under shear was positively correlated with reducing the surface energy of the coatings. The most hydrophobic coatings also showed good performance against a freshwater bacterium, Pseudomonas fluorescens, significantly reducing initial attachment and biofilm formation, and reducing the adhesion strength of attached bacterial cells under shear. Taken together the results indicate potential for further investigation of these coatings for applications such as heat exchangers and optical instruments.


Assuntos
Bactérias/efeitos dos fármacos , Bactérias/crescimento & desenvolvimento , Biofilmes/efeitos dos fármacos , Biofilmes/crescimento & desenvolvimento , Eucariotos/efeitos dos fármacos , Eucariotos/crescimento & desenvolvimento , Dióxido de Silício/farmacologia , Microbiologia da Água , Bactérias/classificação , Diatomáceas/efeitos dos fármacos , Diatomáceas/crescimento & desenvolvimento , Dimetilpolisiloxanos/química , Eucariotos/classificação , Vidro , Halomonadaceae/efeitos dos fármacos , Halomonadaceae/crescimento & desenvolvimento , Interações Hidrofóbicas e Hidrofílicas , Marinobacter/efeitos dos fármacos , Marinobacter/crescimento & desenvolvimento , Nanoestruturas , Pseudomonas fluorescens/efeitos dos fármacos , Pseudomonas fluorescens/crescimento & desenvolvimento , Esporos/crescimento & desenvolvimento , Esporos Bacterianos/efeitos dos fármacos , Esporos Bacterianos/crescimento & desenvolvimento , Propriedades de Superfície , Ulva/efeitos dos fármacos , Ulva/crescimento & desenvolvimento , Volatilização
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa