Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
AAPS PharmSciTech ; 24(5): 112, 2023 Apr 28.
Artigo em Inglês | MEDLINE | ID: mdl-37118443

RESUMO

Achillea wilhelmsii (A. wilhelmsii) contains several therapeutic phytochemicals, proposing a protective effect on inflammatory responses in autoimmune diseases such as ulcerative colitis (UC). However, its activities against UC encounter multiple obstacles. The current study aimed to formulate a colon-specific delivery of A. wilhelmsii for treating UC using chitosan nanoparticles (NPs) and Eudragit S100 as a mucoadhesive and pH-sensitive polymer, respectively. Core chitosan NP was loaded with A. wilhelmsii extract, followed by coating with Eudragit S100. Then, physicochemical characterizations of prepared NPs were conducted, and the anti-UC activity in the rat model was evaluated. The relevant physicochemical characterizations indicated the spherical NPs with an average particle size of 305 ± 34 nm and high encapsulation efficiency (88.6 ± 7.3%). The FTIR (Fourier transform infrared) analysis revealed the Eudragit coating and the extract loading, as well as the high radical scavenging ability of A. wilhelmsii was confirmed. The loaded NPs prevented the extract release in an acidic pH-mimicking medium and presented a complete release thereafter at a colonic pH. The loaded NPs markedly mitigated the induced UC lesions in rats, reflected by reducing inflammation, ulcer severity, and UC-related symptoms. Further, histopathological analysis exhibited reducing the extent of the inflammation and damage to colon tissue, and the determination of the involved pro-inflammatory cytokines in serum showed a significant reduction relative to free extract. The present results show that chitosan NPs containing A. wilhelmsii extract coated with Eudragit having proper physicochemical properties and substantial anti-inflammatory activity can significantly improve colonic lesions caused by UC.


Assuntos
Achillea , Quitosana , Colite Ulcerativa , Colite , Nanopartículas , Ratos , Animais , Colite Ulcerativa/induzido quimicamente , Colite Ulcerativa/tratamento farmacológico , Achillea/química , Colo , Nanopartículas/química , Inflamação/patologia , Colite/induzido quimicamente , Colite/tratamento farmacológico
2.
Cancer Invest ; 38(8-9): 507-521, 2020 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-32870068

RESUMO

Hyperthermic therapy is defined as increasing the temperature of tumor tissues to 40-43 °C that has been effective approach for destroying malignant cells in the field of cancer therapy. Recent line of research has applied different approaches along with hyperthermic treatment to obtain high efficiency and little side effects. Magnetic nanoparticle-based hyperthermia has demonstrated an improved functionality in targeting malignant cells and implement their therapeutic role by heating the tumor cells. Here in this review article, we clarify the diverse aspects of magnetic nanoparticles in the treatment of cancer.


Assuntos
Hipertermia Induzida/métodos , Nanopartículas de Magnetita/administração & dosagem , Neoplasias/terapia , Animais , Humanos , Fenômenos Magnéticos , Fototerapia/métodos
3.
J Biomater Appl ; : 8853282241252729, 2024 Jun 05.
Artigo em Inglês | MEDLINE | ID: mdl-38838691

RESUMO

This study aimed to construct a nanofibrous wound dressing composed of polyvinyl alcohol (PVA) and chitosan (CS) containing curcumin and Glycyrrhiza glabra root extract to inhibit infection and accelerate wound healing. Loading 10 wt% of G. glabra extract-curcumin (50:50) by electrospinng technique resulted in the formation of nanofibers (NFs) with diameter distribution 303 ± 38 and had a uniform and defect-free morphology. FTIR analysis confirmed the loading of the components without adverse interactions. Also, the results showed extremely high porosity, extraordinary liquid absorption capacity, and complete wettability. In addition, G. glabra extract-curcumin showed significant antioxidant activity and their release profile from NFs was continuous and sustained. Also, the prepared NF could inhibit the growth of both Gram-positive Saureus and Gram-negative E. coli strains. Wound healing evaluation in the infected animal model showed that the NFs caused full wound closure and accelerated skin regeneration. The studies on inhibiting the bacteria growth at the wound site also revealed complete inhibitory effects. Moreover, histopathology studies confirmed the complete regeneration of skin layers, formation of collagen fibers, and angiogenesis. Finally, PVA/CS NFs containing G. glabra extract-curcumin as a multifunctional bioactive wound dressing presented a promising approach for promoting the healing of infected wounds.

4.
Int J Biol Macromol ; 228: 506-516, 2023 Feb 15.
Artigo em Inglês | MEDLINE | ID: mdl-36572078

RESUMO

Impaired wound healing is a severe complication of sufferers, related to prolonged wound closure, a high infection rate, and eventually disabilities of organs. To aid resolve this issue, we developed the electrospun polyvinyl alcohol and chitosan (PVA/CS) nanofibrous scaffold-loaded flaxseed extract. The scaffold containing 10 wt% of the extract indicated a three-dimensional cross-network with a nano-scale diameter (257 ± 37 nm) and smooth surface. Also, the relevant analyses confirmed high water absorption, porosity, and wettability of the scaffold. Fourier-transform infrared (FTIR), degradation, and mechanical studies revealed the intact presence and loading of the extract into the scaffold, the complete degradation over 48 h, and a high tensile elastic modulus. Besides, the advanced scaffold displayed remarkable anti-oxidant and could inhibit the growth of both Gram-positive and negative bacteria compared to the free PVA/CS scaffold. Desired fibroblast viability and blood compatibility of flaxseed-loaded scaffold endorsed the biocompatibility for wound zones. The in vitro studies showed that the flaxseed-loaded scaffold resulted in an accelerated wound healing process and 100 % closure of the scratched area within 48 h. The results obtained reveal that the flaxseed-loaded PVA/CS electrospun scaffold could be effectively applied for wound healing promotion.


Assuntos
Quitosana , Linho , Nanofibras , Álcool de Polivinil , Cicatrização
5.
J Pharm Sci ; 112(6): 1687-1697, 2023 06.
Artigo em Inglês | MEDLINE | ID: mdl-36773928

RESUMO

Ginger is an anti-inflammatory and antioxidant natural substance, however, its effectiveness is limited primarily due to insufficient solubility and low oral bioavailability. This study aimed to formulate ginger extract into nanoemulsion (NE) to enhance therapeutic benefits against rheumatoid arthritis (RA). Hence, ginger extract-loaded NEs were prepared by the spontaneous emulsification method. The NE that passed the thermodynamic stability analyses showed no phase changes or appearance of turbidity. They had an average droplet diameter of 76 ± 45 nm with a zeta potential of - 35 ± 12 mV. Besides, the high antioxidant activities (IC50 = 53.89 µg/mL), about ten times increment of the skin permeability, and no sign of skin irritancy were observed from the ginger-loaded NE. The anti-arthritic evaluations of RA-induced rats treated with ginger-loaded NE showed a significant decline in arthritic symptoms and the highest rate of paw edema inhibition (27.7 %). In addition, the level of involved inflammatory cytokines in the serum of rats was significantly reduced (p < 0.05) compared to the negative control, so that histopathological manifestations also approved the reduction of inflammation indications. Thus, the topical delivery of ginger-loaded NE can be an efficient approach for reducing inflammation and inhibit of RA symptoms.


Assuntos
Antioxidantes , Artrite Reumatoide , Ratos , Animais , Ratos Wistar , Emulsões/farmacologia , Artrite Reumatoide/tratamento farmacológico , Inflamação
6.
Int J Biol Macromol ; 168: 464-473, 2021 Jan 31.
Artigo em Inglês | MEDLINE | ID: mdl-33316335

RESUMO

Herein, we fabricated the antibacterial nanofibrous mats composed of cellulose acetate (CA) nanofibers loaded with erythromycin-chitosan nanoparticles (Ery-CS NPs) intended for infected wound dressing. The Ery-loaded CS NPs were prepared by ionic gelation process and then incorporated into the CA electrospun nanofibers (NFs). Regarding physiochemical properties, the NPs and obtained mats were characterized using dynamic light scattering (DLS), scanning electron microscopy (SEM), attenuated total reflection fourier transform infrared (ATR-FTIR), and contact angle measurement. The antimicrobial activity and cell viability of fibroblast cells were also evaluated. The results indicated that Ery was loaded into CS NPs with high encapsulation efficiency (95%). The CA NFs (17% w/v) incorporated with the Ery-CS NPs (12 wt%) displayed smooth homogenous morphology with 141.7 ± 91.7 nm average diameter. The relevant analyses confirmed that the NPs incorporated into NFs and provided high water holding capacity with high porosity. Finally, Ery-CS NPs/CA mats were able to inhibit the growth of both Gram-positive and Gram-negative bacteria as well as showed no cytotoxic effect on the human dermal fibroblast cells. Overall, our findings concluded that the proposed system could be potentially applied as the proper antibacterial mats for infected wound dressing applications.


Assuntos
Antibacterianos/farmacologia , Celulose/análogos & derivados , Quitosana/química , Eritromicina/farmacologia , Infecção dos Ferimentos/tratamento farmacológico , Animais , Antibacterianos/química , Bandagens , Linhagem Celular , Sobrevivência Celular , Celulose/química , Eritromicina/química , Fibroblastos/citologia , Fibroblastos/efeitos dos fármacos , Bactérias Gram-Negativas/efeitos dos fármacos , Bactérias Gram-Positivas/efeitos dos fármacos , Humanos , Nanofibras , Porosidade
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa