Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Science ; 293(5539): 2430-2, 2001 Sep 28.
Artigo em Inglês | MEDLINE | ID: mdl-11577230

RESUMO

We report on the modulation of the transport properties of thin films, grown by molecular beam epitaxy, of the spin-ladder compound [CaCu2O3]4, using the field effect in a gated structure. At high hole-doping levels, superconductivity is induced in the nominally insulating ladder material without the use of high-pressure or chemical substitution. The observation of superconductivity is in agreement with the theoretical prediction that holes doped into spin ladders could pair and possibly superconduct.

2.
J Colloid Interface Sci ; 286(2): 564-72, 2005 Jun 15.
Artigo em Inglês | MEDLINE | ID: mdl-15897072

RESUMO

We have studied the dynamics of the flocculation of poly(styrene-butadiene-acrylic acid) latex suspensions. These suspensions were flocculated by the addition of Ca2+ ions at high concentrations of latex particles. Using diffusing wave spectroscopy and dynamic single light scattering after dilution, we have observed--depending on the pH and on the Ca2+ concentration--several scenarios for flocculation including successive flocculation and deflocculation. This complex behavior reveals that the Ca2+ migration within the shell of the latex is slow in acidic solvent but fast in basic solvent.

3.
J Colloid Interface Sci ; 262(2): 409-17, 2003 Jun 15.
Artigo em Inglês | MEDLINE | ID: mdl-16256621

RESUMO

Four monodisperse core-shell latices were synthesized for small-angle neutron scattering (SANS) studies, differing by the acrylic acid content in the particle shell (1 or 4 wt%) and the T(g) of the acrylic core (around -40 or 10 degrees C). In a first part, the coalescence kinetics of the surfactant-free latices were studied. It was shown that coalescence was hindered by an increase in the acrylic acid content of the shell, pH of the latex, and Tg of the core. These results could be interpreted in terms of chain mobility in the shell and in the core. Upon coalescence, the hydrophilic phase was segregated in spherical, polydisperse domains with an average diameter of 110 nm. In a second part, labeled SDS was used to follow desorption of the surfactant during film formation. It was shown that desorption occurred early in the film formation process when the latex still contained around 20% of water. A small fraction of the surfactant remained irreversibly adsorbed at the particle surface.

4.
J Biomed Mater Res A ; 85(3): 664-73, 2008 Jun 01.
Artigo em Inglês | MEDLINE | ID: mdl-17876801

RESUMO

Two porous titanium implants with a pore size diameter of 800 and 1200 microm (Ti800 and Ti1200) and an interconnected network were manufactured using rapid prototyping. Their dimensions and structure matched those of the computer assisted design. The porosity of the implants was around 60%. Their compressive strength and Young's modulus were around 80 MPa and 2.7 GPa, respectively. These values are comparable to those of cortical bone. The implants were implanted bilaterally in the femoral epiphysis of 15 New Zealand White rabbits. After 3 and 8 weeks, abundant bone formation was found inside the rapid prototyped porous titanium implants. For the Ti1200 implants, bone ingrowth was (23.9 +/- 3.5)% and (10.3 +/- 2.8)%, respectively. A significant statistical difference (p < 0.05) was found for bone ingrowth in the Ti1200 between the two delays. The percentage of bone directly apposited on titanium was (35.8 +/- 5.4)% and (30.5 +/- 5.0)%. No significant difference was found for bone-implant contact between the different time periods and pore sizes. This work demonstrates that manufacturing macroporous titanium implants with controlled shape and porosity using a rapid prototyping method is possible and that this technique is a good candidate for orthopedic and maxillofacial applications.


Assuntos
Regeneração Óssea , Substitutos Ósseos/química , Implantes Experimentais , Titânio/uso terapêutico , Animais , Desenvolvimento Ósseo , Teste de Materiais , Porosidade , Coelhos , Fatores de Tempo
5.
Nature ; 414(6862): 434-6, 2001 Nov 22.
Artigo em Inglês | MEDLINE | ID: mdl-11719801

RESUMO

Understanding the doping mechanisms in the simplest superconducting copper oxide-the infinite-layer compound ACuO2 (where A is an alkaline earth metal)-is an excellent way of investigating the pairing mechanism in high-transition-temperature (high-Tc) superconductors more generally. Gate-induced modulation of the carrier concentration to obtain superconductivity is a powerful means of achieving such understanding: it minimizes the effects of potential scattering by impurities, and of structural modifications arising from chemical dopants. Here we report the transport properties of thin films of the infinite-layer compound CaCuO2 using field-effect doping. At high hole- and electron-doping levels, superconductivity is induced in the nominally insulating material. Maximum values of Tc of 89 K and 34 K are observed respectively for hole- and electron-type doping of around 0.15 charge carriers per CuO2. We can explore the whole doping diagram of the CuO2 plane while changing only a single electric parameter, the gate voltage.

SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa