Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 53
Filtrar
1.
Cancer Immunol Immunother ; 72(12): 4457-4470, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-37796299

RESUMO

BACKGROUND: The inducible Kras/p53 lung adenocarcinoma mouse model, which faithfully recapitulates human disease, is routinely initiated by the intratracheal instillation of a virus-based Cre recombinase delivery system. Handling virus-based delivery systems requires elevated biosafety levels, e.g., biosafety level 2 (BSL-2). However, in experimental animal research facilities, following exposure to viral vectors in a BSL-2 environment, rodents may not be reclassified to BSL-1 according to standard practice, preventing access to small animal micro-computed tomography (micro-CT) scanners that are typically housed in general access areas such as BSL-1 rooms. Therefore, our goal was to adapt the protocol so that the Cre-induced KP mouse model could be handled under BSL-1 conditions during the entire procedure. RESULTS: The Kras-Lox-STOP-Lox-G12D/p53 flox/flox (KP)-based lung adenocarcinoma mouse model was activated by intratracheal instillation of either an adenoviral-based or a gutless, adeno-associated viral-based Cre delivery system. Tumor growth was monitored over time by micro-CT. We have successfully substituted the virus-based Cre delivery system with a commercially available, gutless, adeno-associated, Cre-expressing vector that allows the KP mouse model to be handled and imaged in a BSL-1 facility. By optimizing the anesthesia protocol and switching to a microscope-guided vector instillation procedure, productivity was increased and procedure-related complications were significantly reduced. In addition, repeated micro-CT analysis of individual animals allowed us to monitor tumor growth longitudinally, dramatically reducing the number of animals required per experiment. Finally, we documented the evolution of tumor volume for different doses, which revealed that individual tumor nodules induced by low-titer AAV-Cre transductions can be monitored over time by micro-CT. CONCLUSION: Modifications to the anesthesia and instillation protocols increased the productivity of the original KP protocol. In addition, the switch to a gutless, adeno-associated, Cre-expressing vector allowed longitudinal monitoring of tumor growth under BSL-1 conditions, significantly reducing the number of animals required for an experiment, in line with the 3R principles.


Assuntos
Adenocarcinoma de Pulmão , Neoplasias Pulmonares , Camundongos , Animais , Humanos , Neoplasias Pulmonares/genética , Neoplasias Pulmonares/patologia , Proteínas Proto-Oncogênicas p21(ras)/genética , Dependovirus/genética , Microtomografia por Raio-X , Proteína Supressora de Tumor p53 , Contenção de Riscos Biológicos , Modelos Animais de Doenças , Vetores Genéticos/genética
2.
Cell Mol Life Sci ; 79(8): 445, 2022 Jul 25.
Artigo em Inglês | MEDLINE | ID: mdl-35877003

RESUMO

Once considered a waste product of anaerobic cellular metabolism, lactate has been identified as a critical regulator of tumorigenesis, maintenance, and progression. The putative primary function of lactate dehydrogenase B (LDHB) is to catalyze the conversion of lactate to pyruvate; however, its role in regulating metabolism during tumorigenesis is largely unknown. To determine whether LDHB plays a pivotal role in tumorigenesis, we performed 2D and 3D in vitro experiments, utilized a conventional xenograft tumor model, and developed a novel genetically engineered mouse model (GEMM) of non-small cell lung cancer (NSCLC), in which we combined an LDHB deletion allele with an inducible model of lung adenocarcinoma driven by the concomitant loss of p53 (also known as Trp53) and expression of oncogenic KRAS (G12D) (KP). Here, we show that epithelial-like, tumor-initiating NSCLC cells feature oxidative phosphorylation (OXPHOS) phenotype that is regulated by LDHB-mediated lactate metabolism. We show that silencing of LDHB induces persistent mitochondrial DNA damage, decreases mitochondrial respiratory complex activity and OXPHOS, resulting in reduced levels of mitochondria-dependent metabolites, e.g., TCA intermediates, amino acids, and nucleotides. Inhibition of LDHB dramatically reduced the survival of tumor-initiating cells and sphere formation in vitro, which can be partially restored by nucleotide supplementation. In addition, LDHB silencing reduced tumor initiation and growth of xenograft tumors. Furthermore, we report for the first time that homozygous deletion of LDHB significantly reduced lung tumorigenesis upon the concomitant loss of Tp53 and expression of oncogenic KRAS without considerably affecting the animal's health status, thereby identifying LDHB as a potential target for NSCLC therapy. In conclusion, our study shows for the first time that LDHB is essential for the maintenance of mitochondrial metabolism, especially nucleotide metabolism, demonstrating that LDHB is crucial for the survival and proliferation of NSCLC tumor-initiating cells and tumorigenesis.


Assuntos
Carcinoma Pulmonar de Células não Pequenas , Neoplasias Pulmonares , Animais , Carcinogênese/genética , Carcinogênese/metabolismo , Carcinoma Pulmonar de Células não Pequenas/genética , Carcinoma Pulmonar de Células não Pequenas/metabolismo , Linhagem Celular Tumoral , Proliferação de Células , DNA Mitocondrial/genética , DNA Mitocondrial/metabolismo , Homozigoto , Humanos , Isoenzimas , L-Lactato Desidrogenase/genética , L-Lactato Desidrogenase/metabolismo , Lactatos/metabolismo , Neoplasias Pulmonares/patologia , Camundongos , Mitocôndrias/metabolismo , Células-Tronco Neoplásicas/metabolismo , Nucleotídeos/metabolismo , Proteínas Proto-Oncogênicas p21(ras)/genética , Deleção de Sequência
3.
Medicina (Kaunas) ; 59(6)2023 Jun 01.
Artigo em Inglês | MEDLINE | ID: mdl-37374269

RESUMO

Background and Objectives: The existing literature comparing sublobar and lobar resection in the treatment of stage IA lung cancer highlights the trend and overall need for further evaluation of minimally invasive, parenchymal-sparing techniques. The role of uniportal minimally invasive segmentectomy in the oncological therapy of early-stage non-small cell lung cancer (NSCLC) remains controversial. The aim of this study was to evaluate the clinical and midterm oncological outcomes of patients who underwent uniportal video-assisted anatomical segmentectomy for pathological stage IA lung cancer. Materials and Methods: We retrospectively analyzed all patients with pathological stage IA lung cancer (8th edition UICC) who underwent uniportal minimally invasive anatomical segmentectomy at our institution from January 2015 to December 2018. Results: 85 patients, 54 of whom were men, were included. The median length of hospital stay was 3 days (1.-3. IQR 3-5), whereas 30-day morbidity was 15.3% (13 patients), and the in-hospital mortality rate was 1.2% (1 patient). The 3-year overall survival rate was 87.9% for the total population. It was 90.5% in the IA1 group, 93.3% in the IA2 group, and 70.1% in the IA3 group, respectively. Conclusions: There were satisfactory short-term clinical outcomes with low 30-day morbidity and mortality and promising midterm oncological survival results following uniportal minimally invasive anatomical segmentectomy for pathological stage IA non-small cell lung cancer.


Assuntos
Carcinoma Pulmonar de Células não Pequenas , Neoplasias Pulmonares , Carcinoma de Pequenas Células do Pulmão , Masculino , Humanos , Feminino , Carcinoma Pulmonar de Células não Pequenas/cirurgia , Neoplasias Pulmonares/cirurgia , Neoplasias Pulmonares/patologia , Estudos Retrospectivos , Pneumonectomia , Estadiamento de Neoplasias
4.
Int J Mol Sci ; 23(19)2022 Oct 08.
Artigo em Inglês | MEDLINE | ID: mdl-36233258

RESUMO

Malignant pleural mesothelioma (MPM) is a rare but aggressive thoracic malignancy with limited treatment options. One of the standard treatments for MPM is chemotherapy, which consists of concurrent treatment with pemetrexed and cisplatin. Pemetrexed limits tumor growth by inhibiting critical metabolic enzymes involved in nucleotide synthesis. Cisplatin causes direct DNA damage, such as intra-strand and inter-strand cross-links, which are repaired by the nucleotide excision repair pathway, which depends on relatively high nucleotide levels. We hypothesized that prolonged pretreatment with pemetrexed might deplete nucleotide pools, thereby sensitizing cancer cells to subsequent cisplatin treatment. The MPM cell lines ACC-MESO-1 and NCI-H28 were treated for 72 h with pemetrexed. Three treatment schedules were evaluated by initiating 24 h of cisplatin treatment at 0 h (concomitant), 24 h, and 48 h relative to pemetrexed treatment, resulting in either concomitant administration or pemetrexed pretreatment for 24 h or 48 h, respectively. Multicolor flow cytometry was performed to detect γH2AX (phosphorylation of histone H2AX), a surrogate marker for the activation of the DNA damage response pathway. DAPI staining of DNA was used to analyze cell cycle distribution. Forward and side scatter intensity was used to distinguish subpopulations based on cellular size and granularity, respectively. Our study revealed that prolonged pemetrexed pretreatment for 48 h prior to cisplatin significantly reduced long-term cell growth. Specifically, pretreatment for 48 h with pemetrexed induced a cell cycle arrest, mainly in the G2/M phase, accumulation of persistent DNA damage, and induction of a senescence phenotype. The present study demonstrates that optimizing the treatment schedule by pretreatment with pemetrexed increases the efficacy of the pemetrexed-cisplatin combination therapy in MPM. We show that the observed benefits are associated with the persistence of treatment-induced DNA damage. Our study suggests that an adjustment of the treatment schedule could improve the efficacy of the standard chemotherapy regimen for MPM and might improve patient outcomes.


Assuntos
Neoplasias Pulmonares , Mesotelioma Maligno , Mesotelioma , Neoplasias Pleurais , Protocolos de Quimioterapia Combinada Antineoplásica/uso terapêutico , Cisplatino/farmacologia , Cisplatino/uso terapêutico , Histonas , Humanos , Neoplasias Pulmonares/patologia , Mesotelioma/tratamento farmacológico , Mesotelioma/patologia , Nucleotídeos , Pemetrexede/farmacologia , Pemetrexede/uso terapêutico , Neoplasias Pleurais/tratamento farmacológico , Neoplasias Pleurais/patologia
5.
Am J Physiol Lung Cell Mol Physiol ; 319(5): L794-L809, 2020 11 01.
Artigo em Inglês | MEDLINE | ID: mdl-32726135

RESUMO

Lung injury in mice induces mobilization of discrete subsets of epithelial progenitor cells to promote new airway and alveolar structures. However, whether similar cell types exist in human lung remains unresolved. Using flow cytometry, we identified a distinct cluster of cells expressing the epithelial cell adhesion molecule (EpCAM), a cell surface marker expressed on epithelial progenitor cells, enriched in the ecto-5'-nucleotidase CD73 in unaffected postnatal human lungs resected from pediatric patients with congenital lung lesions. Within the EpCAM+CD73+ population, a small subset coexpresses integrin ß4 and HTII-280. This population remained stable with age. Spatially, EpCAM+CD73+ cells were positioned along the basal membrane of respiratory epithelium and alveolus next to CD73+ cells lacking EpCAM. Expanded EpCAM+CD73+ cells give rise to a pseudostratified epithelium in a two-dimensional air-liquid interface or a clonal three-dimensional organoid assay. Organoids generated under alveolar differentiation conditions were cystic-like and lacked robust alveolar mature cell types. Compared with unaffected postnatal lung, congenital lung lesions were marked by clusters of EpCAM+CD73+ cells in airway and cystic distal lung structures lined by simple epithelium composed of EpCAM+SCGB1A1+ cells and hyperplastic EpCAM+proSPC+ cells. In non-small-cell lung cancer (NSCLC), there was a marked increase in EpCAM+CD73+ tumor cells enriched in inhibitory immune checkpoint molecules CD47 and programmed death-ligand 1 (PD-L1), which was associated with poor survival in lung adenocarcinoma (LUAD). In conclusion, EpCAM+CD73+ cells are rare novel epithelial progenitor cells in the human lung. Importantly, reemergence of CD73 in lung adenocarcinoma enriched in negative immune checkpoint molecules may serve as a novel therapeutic target.


Assuntos
5'-Nucleotidase/metabolismo , Carcinoma Pulmonar de Células não Pequenas/metabolismo , Células Epiteliais/metabolismo , Células-Tronco/citologia , Animais , Diferenciação Celular/fisiologia , Molécula de Adesão da Célula Epitelial/metabolismo , Humanos , Pulmão/patologia , Neoplasias Pulmonares/metabolismo , Células-Tronco Mesenquimais/metabolismo , Camundongos
6.
Am J Physiol Lung Cell Mol Physiol ; 318(4): L813-L830, 2020 04 01.
Artigo em Inglês | MEDLINE | ID: mdl-32073879

RESUMO

Our understanding of mesenchymal cell subsets and their function in human lung affected by aging and in certain disease settings remains poorly described. We use a combination of flow cytometry, prospective cell-sorting strategies, confocal imaging, and modeling of microvessel formation using advanced microfluidic chip technology to characterize mesenchymal cell subtypes in human postnatal and adult lung. Tissue was obtained from patients undergoing elective surgery for congenital pulmonary airway malformations (CPAM) and other airway abnormalities including chronic obstructive pulmonary disease (COPD). In microscopically normal postnatal human lung, there was a fivefold higher mesenchymal compared with epithelial (EpCAM+) fraction, which diminished with age. The mesenchymal fraction composed of CD90+ and CD90+CD73+ cells was enriched in CXCL12 and platelet-derived growth factor receptor-α (PDGFRα) and located in close proximity to EpCAM+ cells in the alveolar region. Surprisingly, alveolar organoids generated from EpCAM+ cells supported by CD90+ subset were immature and displayed dysplastic features. In congenital lung lesions, cystic air spaces and dysplastic alveolar regions were marked with an underlying thick interstitium composed of CD90+ and CD90+PDGFRα+ cells. In postnatal lung, a subset of CD90+ cells coexpresses the pericyte marker CD146 and supports self-assembly of perfusable microvessels. CD90+CD146+ cells from COPD patients fail to support microvessel formation due to fibrinolysis. Targeting the plasmin-plasminogen system during microvessel self-assembly prevented fibrin gel degradation, but microvessels were narrower and excessive contraction blocked perfusion. These data provide important new information regarding the immunophenotypic identity of key mesenchymal lineages and their change in a diverse setting of congenital lung lesions and COPD.


Assuntos
Imunomodulação/imunologia , Células-Tronco Mesenquimais/metabolismo , Antígenos Thy-1/imunologia , Antígenos Thy-1/metabolismo , Adolescente , Biomarcadores/metabolismo , Antígeno CD146/imunologia , Antígeno CD146/metabolismo , Separação Celular/métodos , Criança , Pré-Escolar , Molécula de Adesão da Célula Epitelial/imunologia , Molécula de Adesão da Célula Epitelial/metabolismo , Feminino , Humanos , Fatores Imunológicos/imunologia , Fatores Imunológicos/metabolismo , Lactente , Recém-Nascido , Masculino , Células-Tronco Mesenquimais/imunologia , Microvasos/imunologia , Microvasos/metabolismo , Pericitos/imunologia , Pericitos/metabolismo , Estudos Prospectivos
7.
Cancer Cell Int ; 19: 317, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31798346

RESUMO

BACKGROUND: Cisplatin plus pemetrexed combination therapy is considered the standard treatment for patients with advanced, non-squamous, non-small-cell lung cancer (NSCLC). However, advanced NSCLC has a 5-year survival rate of below 10%, which is mainly due to therapy resistance. We previously showed that the NSCLC cell line A549 harbors different subpopulations including a mesenchymal-like subpopulation characterized by increased chemo- and radiotherapy resistance. Recently, therapy resistance in hematological and solid tumors has been associated with increased mitochondrial activity. Thus, the aim of this study was to investigate the role of the mitochondrial activity in NSCLC chemotherapy resistance. METHODS: Based on MitoTracker staining, subpopulations characterized by the highest 10% (Mito-High) or lowest 10% (Mito-Low) mitochondrial mass content were sorted by FACS (Fluorescence-Activated Cell Sorting) from paraclonal cultures of the NSCLC A549 cell line . Mitochondrial DNA copy numbers were quantified by real-time PCR whereas basal cellular respiration was measured by high-resolution respirometry. Cisplatin and pemetrexed response were quantified by proliferation and colony formation assay. RESULTS: Pemetrexed treatment of parental A549 cells increased mitochondrial mass over time. FACS-sorted paraclonal Mito-High cells featured increased mitochondrial mass and mitochondrial DNA copy number compared to the Mito-Low cells. Paraclonal Mito-High cells featured an increased proliferation rate and were significantly more resistant to cisplatin treatment than Mito-Low cells. Interestingly, cisplatin-resistant, paraclonal Mito-High cells were significantly more sensitive to pemetrexed treatment than Mito-Low cells. We provide a working model explaining the molecular mechanism underlying the increased cisplatin- and decreased pemetrexed resistance of a distinct subpopulation characterized by high mitochondrial mass. CONCLUSIONS: This study revealed that cisplatin resistant A549 lung cancer cells can be identified by their increased levels of mitochondrial mass. However, Mito-High cells feature an increased sensitivity to pemetrexed treatment. Thus, pemetrexed and cisplatin target reciprocal lung cancer subpopulations, which could explain the increased efficacy of the combination therapy in the clinical setting.

8.
Eur Respir J ; 52(1)2018 07.
Artigo em Inglês | MEDLINE | ID: mdl-30054348

RESUMO

Malignant pleural effusions (MPE) are a common pathology, treated by respiratory physicians and thoracic surgeons alike. In recent years, several well-designed randomised clinical trials have been published that have changed the landscape of MPE management. The European Respiratory Society (ERS) and the European Association for Cardio-Thoracic Surgery (EACTS) established a multidisciplinary collaboration of clinicians with expertise in the management of MPE with the aim of producing a comprehensive review of the scientific literature.Six areas of interest were identified, including the optimum management of symptomatic MPE, management of trapped lung in MPE, management of loculated MPE, prognostic factors in MPE, whether there is a role for oncological therapies prior to intervention for MPE and whether a histological diagnosis is always required in MPE.The literature revealed that talc pleurodesis and indwelling pleural catheters effectively manage the symptoms of MPE. There was limited evidence regarding the management of trapped lung or loculated MPE. The LENT score was identified as a validated tool for predicting survival in MPE, with Brims' prognostic score demonstrating utility in mesothelioma prognostication. There was no evidence to support the use of oncological therapies as an alternative to MPE drainage, and the literature supported the use of tissue biopsy as the gold standard for diagnosis and treatment planning.


Assuntos
Drenagem/métodos , Cuidados Paliativos/métodos , Derrame Pleural Maligno/terapia , Pleurodese/métodos , Toracentese/métodos , Comitês Consultivos , Drenagem/efeitos adversos , Europa (Continente) , Humanos , Derrame Pleural Maligno/diagnóstico por imagem , Derrame Pleural Maligno/epidemiologia , Pleurodese/efeitos adversos , Recidiva , Retratamento , Fatores de Risco , Sociedades Médicas , Toracentese/efeitos adversos
9.
World J Surg ; 42(11): 3646-3650, 2018 11.
Artigo em Inglês | MEDLINE | ID: mdl-29770873

RESUMO

BACKGROUND: Xiphodynia is a rare condition with hardly any data published regarding xiphoidectomy as a valid treatment option for intractable disease. It is necessary to bear this syndrome in mind after having filtered out other differential diagnoses. METHODS: Between 2003 and 2015, 11 patients underwent xiphoidectomy for intractable xiphodynia at our institution. Patients' charts were reviewed including preoperative workup, operative technique, and results. Every patient had routine follow-ups, 4 weeks after the procedure and 1 year after surgery. RESULTS: The main symptom was chest pain in the area of the xiphoid. Conservative treatment trials with different combinations of analgesics over at least 1 year did not lead to insufficient and long-term improvement, which is why the decision for a surgical xiphoidectomy was eventually made. No postoperative complications occurred. Significant pain relief was achieved in eight out of ten patients; one patient was lost to long-term follow-up. Both patients with insufficient pain relief have had previous surgery in form of a sternotomy and upper median laparotomy. CONCLUSIONS: Xiphodynia is a diagnostic conundrum, which is why reports on its treatment including surgical resection of the xiphoid are even sparser. So far, this is the largest reported series of surgically treated xiphodynia. Correct diagnosis remains the key factor for success. While tenderness over the tip of the xiphoid process combined with protrusion of the xiphoid with a xiphisternal angle of <160° are good indications for surgery, patients after previous operations affecting the xiphoid process are less likely to benefit from xiphoidectomy.


Assuntos
Dor no Peito/cirurgia , Processo Xifoide/cirurgia , Adulto , Idoso , Dor no Peito/fisiopatologia , Diagnóstico Diferencial , Feminino , Humanos , Tempo de Internação , Masculino , Pessoa de Meia-Idade , Satisfação do Paciente , Doenças Raras , Processo Xifoide/diagnóstico por imagem , Processo Xifoide/fisiopatologia , Adulto Jovem
10.
Cancer Cell Int ; 16(1): 66, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-27594806

RESUMO

BACKGROUND: Lung cancer causes the most cancer deaths worldwide, thus there is a urgent need to develop new treatment options. Concurrent chemoradiotherapy has become a common strategy for the treatment of non-resectable solid tumors including non-small cell lung cancer. Pemetrexed is a folic acid antagonist that inhibits the synthesis of precursor nucleotides, whereas ionizing radiation induces DNA damage, the repair of which is dependent on sufficiently high nucleotide levels. In the clinical setting, the pemetrexed-ionizing radiation combination therapy is administered concomitantly. We hypothesized that prolonged pretreatment with pemetrexed could be beneficial, as prior depletion of nucleotide pools could sensitize cancer cells to subsequent irradiation. METHODS: Non-small cell lung cancer A549 cells were treated with 1 µM pemetrexed for 72 h. In addition, cells were exposed to five gray ionizing radiation either 1, 48 or 71 h after the initiation of the pemetrexed treatment. Cell growth, senescence induction, cell cycle distribution and DNA damage marker accumulation were analysed at different time points during the treatment and the recovery phase. RESULTS: Stand-alone treatments of five gray ionizing radiation and 1 µM pemetrexed resulted in an intermediate cell growth inhibition of A549 cells and were therefore applied as the combination regimen. Prolonged pemetrexed pretreatment for 71 h resulted in a significant S-phase accumulation. Irradiation and prolonged pemetrexed pretreatment maximally delayed long term cell growth. Additionally, senescence was augmented and recovery from treatment-induced DNA damage was most prominently delayed by prolonged pemetrexed pretreatment. CONCLUSIONS: Pretreatment with pemetrexed increases anticancer efficiency of pemetrexed-ionizing radiation combination therapy, which correlates with a persistence of treatment-induced DNA damage. Therefore, this study warrants further investigations to elucidate whether a similar adaptation to the standard treatment regimen could enhance the effectiveness of the non-small cell lung cancer clinical treatment regimen.

11.
BMC Cancer ; 16: 125, 2016 Feb 19.
Artigo em Inglês | MEDLINE | ID: mdl-26895954

RESUMO

BACKGROUND: Lung cancer is the leading cause of cancer-related mortality, and new therapeutic options are urgently needed. Non-small cell lung cancer (NSCLC) accounts for approximately 85% of all lung cancers, with the current standard regimen of care for NSCLC including chemotherapy with pemetrexed as a single agent or in combination with platinum-based agents, e.g. cisplatin. Pemetrexed is a folic acid antagonist that inhibits the synthesis of precursor nucleotides, whereas cisplatin directly induces DNA adducts, the repair of which is dependent on sufficiently high nucleotide levels. In the clinical setting, the pemetrexed-cisplatin combination therapy is administered concomitantly. We hypothesized that prolonged pretreatment with pemetrexed could be beneficial, as prior depletion of nucleotide pools could sensitize cancer cells to subsequent treatment with cisplatin. METHODS: NSCLC A549 and H460 cells were treated with pemetrexed for 72 h. In addition, 24 h of cisplatin treatment was initiated at day 1, 2 or 3 resulting in either simultaneous pemetrexed application or pemetrexed pretreatment for 24 or 48 h, respectively. Cell growth and colony formation as well as senescence induction were quantified after treatment. Cell cycle distribution and phosphorylation of histone variant H2AX as a surrogate marker for DNA damage was quantified by flow cytometry. Relative changes in gene expression were determined by quantitative real time PCR. RESULTS: Prolonged pemetrexed pretreatment for 48 h prior to cisplatin treatment maximally delayed long-term cell growth and significantly reduced the number of recovering clones. Moreover, apoptosis and senescence were augmented and recovery from treatment-induced DNA damage was delayed. Interestingly, a cell population was identified that displayed an epithelial-to-mesenchymal transition (EMT) and which had a stem cell phenotype. This population was highly resistant to concomitant pemetrexed-cisplatin treatment but was sensitized by pemetrexed pretreatment. CONCLUSIONS: Adaptation of the standard treatment schedule to include pretreatment with pemetrexed optimizes the anticancer efficiency of pemetrexed-cisplatin combination therapy, which correlates with a persistence of treatment-induced DNA damage. Therefore, this study warrants further investigations to elucidate whether such an adaptation could enhance the effectiveness of the standard clinical treatment regimen. In addition, a subpopulation of therapy resistant cells with EMT and cancer stem cell features was identified that was resistant to the standard treatment regimen but sensitive to pemetrexed pretreatment combined with cisplatin.


Assuntos
Antineoplásicos/farmacologia , Carcinoma Pulmonar de Células não Pequenas/tratamento farmacológico , Cisplatino/farmacologia , Dano ao DNA , Neoplasias Pulmonares/tratamento farmacológico , Pemetrexede/farmacologia , Carcinoma Pulmonar de Células não Pequenas/genética , Carcinoma Pulmonar de Células não Pequenas/patologia , Ciclo Celular/efeitos dos fármacos , Linhagem Celular Tumoral , Senescência Celular/efeitos dos fármacos , Resistencia a Medicamentos Antineoplásicos/efeitos dos fármacos , Sinergismo Farmacológico , Transição Epitelial-Mesenquimal/efeitos dos fármacos , Humanos , Neoplasias Pulmonares/genética , Neoplasias Pulmonares/patologia , Células-Tronco Neoplásicas/efeitos dos fármacos
12.
Surg Open Sci ; 20: 82-93, 2024 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-38973812

RESUMO

Introduction: New strategies and methods are needed to ensure that new generations can train and acquire surgical skills in a safe environment. Materials and methods: From January 2020 to October 2020, we performed a single centre, prospective observational cohort study. 19 participants (15 students, 4 residents) enrolled and 16 participants (13 students, 3 residents) successfully completed the curriculum. We performed a quantitative data analysis to evaluate its effectiveness in gaining and improving basic surgical endoscopic skills. Results: The time for single knot tying pre-, mid-, and post-training was reduced significantly, the average time (sec) decreased by 79.5 % (p < 0.001), the total linear distance (cm) by 74.5 % (p < 0.001) and the total angular distance (rad) by 71.7 % (p < 0.001). The average acceleration (mm/s2) increased by 20 % (p = 0.041). Additionally, the average speed increased by 23.5 % (p < 0.001), while motion smoothness (m/s3) increased by 20.4 % (p = 0.02). Conclusion: The obtained performance scores showed a significant increase in participants improving their basic surgical performance skills on the endoscopic simulator. This curriculum can be easily implemented in any surgical specialty as part of the residency training curriculum before first exposure in the operation room. All 16 participants recommended the implementation of such simulator training in their surgical training curriculum.

13.
Eur J Radiol ; 176: 111529, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38810440

RESUMO

PURPOSE: This study investigated strategies to reduce pneumothorax risk in CT-guided lung biopsy. The approach involved administering 10 ml of 1 % lidocaine fluid in the subpleural or pleural space before lung puncture and utilizing the gravitational effect of pleural pressure with specific patient positioning. METHOD: We retrospectively analyzed 72 percutaneous CT-guided lung biopsies performed at a single center between January 2020 and April 2023. These were grouped based on fluid administration during the biopsy and whether the biopsies were conducted in dependent or non-dependent lung regions. Confounding factors like patient demographics, lesion characteristics, and procedural details were assessed. Patient characteristics and the occurrence of pneumothoraces were compared using a Kurskal-Wallis test for continuous variables and a Fisher's exact test for categorical variables. Multivariable logistic regression was used to identify potential confounders. RESULTS: Subpleural or pleural fluid administration and performing biopsies in dependent lung areas were significantly linked to lower peri-interventional pneumothorax incidence (n = 15; 65 % without fluid in non-dependent areas, n = 5; 42 % without fluid in dependent areas, n = 5; 36 % with fluid in non-dependent areas,n = 0; 0 % with fluid in dependent areas; p = .001). Even after adjusting for various factors, biopsy in dependent areas and fluid administration remained independently associated with reduced pneumothorax risk (OR 0.071, p<=.01 for lesions with fluid administration; OR 0.077, p = .016 for lesions in dependent areas). CONCLUSIONS: Pre-puncture fluid administration to the pleura and consideration of gravitational effects during patient positioning can effectively decrease pneumothorax occurrences in CT-guided lung biopsy.


Assuntos
Biópsia Guiada por Imagem , Pleura , Pneumotórax , Tomografia Computadorizada por Raios X , Humanos , Feminino , Masculino , Pneumotórax/prevenção & controle , Pneumotórax/etiologia , Biópsia Guiada por Imagem/métodos , Biópsia Guiada por Imagem/efeitos adversos , Estudos Retrospectivos , Pessoa de Meia-Idade , Pleura/patologia , Pleura/diagnóstico por imagem , Idoso , Pulmão/patologia , Pulmão/diagnóstico por imagem , Radiografia Intervencionista/métodos , Gravitação , Lidocaína/administração & dosagem , Posicionamento do Paciente/métodos , Adulto , Pressão , Punções
14.
JTO Clin Res Rep ; 5(5): 100672, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38715965

RESUMO

Introduction: Malignant pleural mesothelioma (MPM) is a rare and universally lethal malignancy with limited treatment options. Immunotherapy with immune checkpoint inhibitors (ICIs) has recently been approved for unresectable MPM, but response to ICIs is heterogeneous, and reliable biomarkers for prospective selection of appropriate subpopulations likely to benefit from ICIs remain elusive. Methods: We performed multiscale integrative analyses of published primary tumor data set from The Cancer Genome Atlas (TCGA) and the French cohort E-MTAB-1719 to unravel the tumor immune microenvironment of MPM deficient in BAP1, one of the most frequently mutated tumor suppressor genes (TSGs) in the disease. The molecular profiling results were validated in independent cohorts of patients with MPM using immunohistochemistry and multiplex immunohistochemistry. Results: We revealed that BAP1 deficiency enriches immune-associated pathways in MPM, leading to increased mRNA signatures of interferon alfa/gamma response, activating dendritic cells, immune checkpoint receptors, and T-cell inflammation. This finding was confirmed in independent patient cohorts, where MPM tumors with low BAP1 levels are associated with an inflammatory tumor immune microenvironment characterized by increased exhausted precursor T-cells and macrophages but decreased myeloid-derived suppressor cells (MDSCs). In addition, BAP1low MPM cells are in close proximity to T cells and therefore can potentially be targeted with ICIs. Finally, we revealed that BAP1-proficient MPM is associated with a hyperactive mitogen-activated protein kinase (MAPK) pathway and may benefit from treatment with MEK inhibitors (MEKis). Conclusion: Our results suggest that BAP1 plays an immunomodulatory role in MPM and that BAP1-deficient MPM may benefit from immunotherapy, which merits further clinical investigation.

15.
Ann Thorac Surg ; 2023 Sep 19.
Artigo em Inglês | MEDLINE | ID: mdl-37734641

RESUMO

BACKGROUND: The criteria for chest drain removal after lung resections remain vague and rely on personal experience instead of evidence. Because pleural fluid resorption is proportional to body weight, a weight-related approach seems reasonable. We examined the feasibility of a weight-adjusted fluid output threshold concerning postoperative respiratory complications and the occurrence of symptomatic pleural effusion after chest drain removal. Our secondary objectives were the hospital length of stay and pain levels before and after chest drain removal. METHODS: This was a single-center randomized controlled trial including 337 patients planned for open or thoracoscopic anatomical lung resections. Patients were randomly assigned postoperatively into 2 groups. The chest drain was removed in the study group according to a fluid output threshold calculated by the 5 mL × body weight (in kg)/24 hours formula. In the control group, our previous traditional fluid threshold of 200 mL/24 hours was applied. RESULTS: No differences were evident regarding the occurrence of pleural effusion and dyspnea at discharge and 30 days postoperatively. In the logistic regression analysis, the surgical modality was a risk factor for other complications, and age was the only variable influencing postoperative dyspnea. Time to chest drain removal was identical in both groups, and time to discharge was shorter after open surgery in the test group. CONCLUSIONS: No increased postoperative complications occurred with this weight-based formula, and a trend toward earlier discharge after open surgery was observed in the test group.

16.
Front Pharmacol ; 14: 1114739, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-36959848

RESUMO

Prolonged exposure to environmental respirable toxicants can lead to the development and worsening of severe respiratory diseases such as asthma, chronic obstructive pulmonary disease (COPD) and fibrosis. The limited number of FDA-approved inhaled drugs for these serious lung conditions has led to a shift from in vivo towards the use of alternative in vitro human-relevant models to better predict the toxicity of inhaled particles in preclinical research. While there are several inhalation exposure models for the upper airways, the fragile and dynamic nature of the alveolar microenvironment has limited the development of reproducible exposure models for the distal lung. Here, we present a mechanistic approach using a new generation of exposure systems, the Cloud α AX12. This novel in vitro inhalation tool consists of a cloud-based exposure chamber (VITROCELL) that integrates the breathing AXLung-on-chip system (AlveoliX). The ultrathin and porous membrane of the AX12 plate was used to create a complex multicellular model that enables key physiological culture conditions: the air-liquid interface (ALI) and the three-dimensional cyclic stretch (CS). Human-relevant cellular models were established for a) the distal alveolar-capillary interface using primary cell-derived immortalized alveolar epithelial cells (AXiAECs), macrophages (THP-1) and endothelial (HLMVEC) cells, and b) the upper-airways using Calu3 cells. Primary human alveolar epithelial cells (AXhAEpCs) were used to validate the toxicity results obtained from the immortalized cell lines. To mimic in vivo relevant aerosol exposures with the Cloud α AX12, three different models were established using: a) titanium dioxide (TiO2) and zinc oxide nanoparticles b) polyhexamethylene guanidine a toxic chemical and c) an anti-inflammatory inhaled corticosteroid, fluticasone propionate (FL). Our results suggest an important synergistic effect on the air-blood barrier sensitivity, cytotoxicity and inflammation, when air-liquid interface and cyclic stretch culture conditions are combined. To the best of our knowledge, this is the first time that an in vitro inhalation exposure system for the distal lung has been described with a breathing lung-on-chip technology. The Cloud α AX12 model thus represents a state-of-the-art pre-clinical tool to study inhalation toxicity risks, drug safety and efficacy.

17.
Cell Death Discov ; 9(1): 55, 2023 Feb 10.
Artigo em Inglês | MEDLINE | ID: mdl-36765038

RESUMO

Malignant pleural mesothelioma (MPM) is a lethal malignancy etiologically caused by asbestos exposure, for which there are few effective treatment options. Although asbestos carcinogenesis is associated with reactive oxygen species (ROS), the bona fide oncogenic signaling pathways that regulate ROS homeostasis and bypass ROS-evoked apoptosis in MPM are poorly understood. In this study, we demonstrate that the mitogen-activated protein kinase (MAPK) pathway RAS-RAF-MEK-ERK is hyperactive and a molecular driver of MPM, independent of histological subtypes and genetic heterogeneity. Suppression of MAPK signaling by clinically approved MEK inhibitors (MEKi) elicits PARP1 to protect MPM cells from the cytotoxic effects of MAPK pathway blockage. Mechanistically, MEKi induces impairment of homologous recombination (HR) repair proficiency and mitochondrial metabolic activity, which is counterbalanced by pleiotropic PARP1. Consequently, the combination of MEK with PARP inhibitors enhances apoptotic cell death in vitro and in vivo that occurs through coordinated upregulation of cytotoxic ROS in MPM cells, suggesting a mechanism-based, readily translatable strategy to treat this daunting disease. Collectively, our studies uncover a previously unrecognized scenario that hyperactivation of the MAPK pathway is an essential feature of MPM and provide unprecedented evidence that MAPK signaling cooperates with PARP1 to homeostatically maintain ROS levels and escape ROS-mediated apoptosis.

18.
World J Emerg Surg ; 18(1): 36, 2023 05 27.
Artigo em Inglês | MEDLINE | ID: mdl-37245048

RESUMO

INTRODUCTION: The diagnosis of cardiac contusion, caused by blunt chest trauma, remains a challenge due to the non-specific symptoms it causes and the lack of ideal tests to diagnose myocardial damage. A cardiac contusion can be life-threatening if not diagnosed and treated promptly. Several diagnostic tests have been used to evaluate the risk of cardiac complications, but the challenge of identifying patients with contusions nevertheless remains. AIM OF THE STUDY: To evaluate the accuracy of diagnostic tests for detecting blunt cardiac injury (BCI) and its complications, in patients with severe chest injuries, who are assessed in an emergency department or by any front-line emergency physician. METHODS: A targeted search strategy was performed using Ovid MEDLINE and Embase databases from 1993 up to October 2022. Data on at least one of the following diagnostic tests: electrocardiogram (ECG), serum creatinine phosphokinase-MB level (CPK-MB), echocardiography (Echo), Cardiac troponin I (cTnI) or Cardiac troponin T (cTnT). Diagnostic tests for cardiac contusion were evaluated for their accuracy in meta-analysis. Heterogeneity was assessed using the I2 and the QUADAS-2 tool was used to assess bias of the studies. RESULTS: This systematic review yielded 51 studies (n = 5,359). The weighted mean incidence of myocardial injuries after sustaining a blunt force trauma stood at 18.3% of cases. Overall weighted mean mortality among patients with blunt cardiac injury was 7.6% (1.4-36.4%). Initial ECG, cTnI, cTnT and transthoracic echocardiography TTE all showed high specificity (> 80%), but lower sensitivity (< 70%). TEE had a specificity of 72.1% (range 35.8-98.2%) and sensitivity of 86.7% (range 40-99.2%) in diagnosing cardiac contusion. CK-MB had the lowest diagnostic odds ratio of 3.598 (95% CI: 1.832-7.068). Normal ECG accompanied by normal cTnI showed a high sensitivity of 85% in ruling out cardiac injuries. CONCLUSION: Emergency physicians face great challenges in diagnosing cardiac injuries in patients following blunt trauma. In the majority of cases, joint use of ECG and cTnI was a pragmatic and cost-effective approach to rule out cardiac injuries. In addition, TEE may be highly accurate in identifying cardiac injuries in suspected cases.


Assuntos
Traumatismos Cardíacos , Contusões Miocárdicas , Traumatismos Torácicos , Ferimentos não Penetrantes , Humanos , Traumatismos Torácicos/complicações , Traumatismos Torácicos/diagnóstico , Ferimentos não Penetrantes/complicações , Ferimentos não Penetrantes/diagnóstico , Traumatismos Cardíacos/diagnóstico , Traumatismos Cardíacos/complicações , Contusões Miocárdicas/diagnóstico , Contusões Miocárdicas/complicações , Troponina I , Troponina T , Testes Diagnósticos de Rotina
19.
Front Oncol ; 12: 1004669, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36483040

RESUMO

Adaptions to therapeutic pressures exerted on cancer cells enable malignant progression of the tumor, culminating in escape from programmed cell death and development of resistant diseases. A common form of cancer adaptation is non-genetic alterations that exploit mechanisms already present in cancer cells and do not require genetic modifications that can also lead to resistance mechanisms. Epithelial-to-mesenchymal transition (EMT) is one of the most prevalent mechanisms of adaptive drug resistance and resulting cancer treatment failure, driven by epigenetic reprogramming and EMT-specific transcription factors. A recent breakthrough in cancer treatment is the development of KRASG12C inhibitors, which herald a new era of therapy by knocking out a unique substitution of an oncogenic driver. However, these highly selective agents targeting KRASG12C, such as FDA-approved sotorasib (AMG510) and adagrasib (MRTX849), inevitably encounter multiple mechanisms of drug resistance. In addition to EMT, cancer cells can hijack or rewire the sophisticated signaling networks that physiologically control cell proliferation, growth, and differentiation to promote malignant cancer cell phenotypes, suggesting that inhibition of multiple interconnected signaling pathways may be required to block tumor progression on KRASG12C inhibitor therapy. Furthermore, the tumor microenvironment (TME) of cancer cells, such as tumor-infiltrating lymphocytes (TILs), contribute significantly to immune escape and tumor progression, suggesting a therapeutic approach that targets not only cancer cells but also the TME. Deciphering and targeting cancer adaptions promises mechanistic insights into tumor pathobiology and improved clinical management of KRASG12C-mutant cancer. This review presents recent advances in non-genetic adaptations leading to resistance to KRASG12C inhibitors, with a focus on oncogenic pathway rewiring, TME, and EMT.

20.
Cancers (Basel) ; 14(15)2022 Aug 02.
Artigo em Inglês | MEDLINE | ID: mdl-35954422

RESUMO

MPM is an aggressive tumor originating from pleural mesothelial cells. A characteristic feature of the disease is the dominant prevalence of therapeutically intractable inactivating alterations in TSGs, making MPM one of the most difficult cancers to treat and the epitome of a cancer characterized by a significant lack of therapy options and an extremely poor prognosis (5-year survival rate of only 5% to 10%). Extensive interpatient heterogeneity poses another major challenge for targeted therapy of MPM, warranting stratified therapy for specific subgroups of MPM patients. Accurate preclinical models are critical for the discovery of new therapies and the development of personalized medicine. Organoids, an in vitro 'organ-like' 3D structure derived from patient tumor tissue that faithfully mimics the biology and complex architecture of cancer and largely overcomes the limitations of other existing models, are the next-generation tumor model. Although organoids have been successfully produced and used in many cancers, the development of MPM organoids is still in its infancy. Here, we provide an overview of recent advances in cancer organoids, focusing on the progress and challenges in MPM organoid development. We also elaborate the potential of MPM organoids for understanding MPM pathobiology, discovering new therapeutic targets, and developing personalized treatments for MPM patients.

SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa