Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 19 de 19
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Chemphyschem ; 20(10): 1348-1359, 2019 05 16.
Artigo em Inglês | MEDLINE | ID: mdl-30719807

RESUMO

Binary combinations of borohydrides have been extensivly investigated evidencing the formation of eutectics, bimetallic compounds or solid solutions. In this paper, the investigation has been extended to ternary and quaternary systems in the LiBH4 -NaBH4 -KBH4 -Mg(BH4 )2 -Ca(BH4 )2 system. Possible interactions among borohydrides in equimolar composition has been explored by mechanochemical treatment. The obtained phases were analysed by X-ray diffraction and the thermal behaviour of the mixtures were analysed by HP-DSC and DTA, defining temperature of transitions and decomposition reactions. The release of hydrogen was detected by MS, showing the role of the presence of solid solutions and multi-cation compounds on the hydrogen desorption reactions. The presence of LiBH4 generally promotes the release of H2 at about 200 °C, while KCa(BH4 )3 promotes the release in a single-step reaction at higher temperatures.

2.
Phys Chem Chem Phys ; 21(36): 19825-19834, 2019 Sep 18.
Artigo em Inglês | MEDLINE | ID: mdl-31495854

RESUMO

CO2 emissions have been continuously increasing during the last half of the century with a relevant impact on the planet and are the main contributor to the greenhouse effect and global warming. The development of new technologies to mitigate these emissions poses a challenge. Herein, the recycling of CO2 to produce CH4 selectively by using Mg2FeH6 and Mg2NiH4 complex hydrides as dual conversion promoters and hydrogen sources has been demonstrated. Magnesium-based metal hydrides containing Fe and Ni catalyzed the hydrogenation of CO2 and their total conversion was obtained at 400 °C after 5 h and 10 h, respectively. The complete hydrogenation of CO2 depended on the complex hydride, H2 : CO2 mol ratio, and experimental conditions: temperature and time. For both hydrides, the activation of CO2 on the metal surface and its subsequent capture resulted in the formation of MgO. Investigations on the Mg2FeH6-CO2 system indicated that the main process occurs via the reversed water-gas shift reaction (WGSR), followed by the methanation of CO in the presence of steam. In contrast, the reduction of CO2 by the Mg-based hydride in the Mg2NiH4-CO2 system has a strong contribution to the global process. Complex metal hydrides are promising dual promoter-hydrogen sources for CO2 recycling and conversion into valuable fuels such as CH4.

3.
Chemistry ; 24(6): 1342-1347, 2018 Jan 26.
Artigo em Inglês | MEDLINE | ID: mdl-29024174

RESUMO

Complex hydrides have played important roles in energy storage area. Here a complex hydride made of Li2 NH and LiBH4 was synthesized, which has a structure tentatively indexed using an orthorhombic cell with a space group of Pna21 and lattice parameters of a=10.121, b=6.997, and c=11.457 Å. The Li2 NH-LiBH4 sample (in a molar ratio of 1:1) shows excellent hydrogenation kinetics, starting to absorb H2 at 310 K, which is more than 100 K lower than that of pristine Li2 NH. Furthermore, the Li+ ion conductivity of the Li2 NH-LiBH4 sample is about 1.0×10-5  S cm-1 at room temperature, and is higher than that of either Li2 NH or LiBH4 at 373 K. Those unique properties of the Li2 NH-LiBH4 complex render it a promising candidate for hydrogen storage and Li ion conduction.

4.
Inorg Chem ; 57(6): 3197-3205, 2018 Mar 19.
Artigo em Inglês | MEDLINE | ID: mdl-29512391

RESUMO

The crystal structure of a mixed amide-imide phase, RbMgND2ND, has been solved in the orthorhombic space group Pnma ( a = 9.55256(31), b = 3.70772(11) and c = 10.08308(32) Å). A new metal amide-hydride solid solution, Rb(NH2) xH(1- x), has been isolated and characterized in the entire compositional range. The profound analogies, as well as the subtle differences, with the crystal chemistry of KMgND2ND and K(NH2) xH1- x are thoroughly discussed. This approach suggests that the comparable performances obtained using K- and Rb-based additives for the Mg(NH2)2- 2LiH and 2LiN H2-MgH2 hydrogen storage systems are likely to depend on the structural similarities of possible reaction products and intermediates.

5.
Chem Soc Rev ; 46(5): 1565-1634, 2017 Mar 06.
Artigo em Inglês | MEDLINE | ID: mdl-28218318

RESUMO

A wide variety of metal borohydrides, MBH4, have been discovered and characterized during the past decade, revealing an extremely rich chemistry including fascinating structural flexibility and a wide range of compositions and physical properties. Metal borohydrides receive increasing interest within the energy storage field due to their extremely high hydrogen density and possible uses in batteries as solid state ion conductors. Recently, new types of physical properties have been explored in lanthanide-bearing borohydrides related to solid state phosphors and magnetic refrigeration. Two major classes of metal borohydride derivatives have also been discovered: anion-substituted compounds where the complex borohydride anion, BH4-, is replaced by another anion, i.e. a halide or amide ion; and metal borohydrides modified with neutral molecules, such as NH3, NH3BH3, N2H4, etc. Here, we review new synthetic strategies along with structural, physical and chemical properties for metal borohydrides, revealing a number of new trends correlating composition, structure, bonding and thermal properties. These new trends provide general knowledge and may contribute to the design and discovery of new metal borohydrides with tailored properties towards the rational design of novel functional materials. This review also demonstrates that there is still room for discovering new combinations of light elements including boron and hydrogen, leading to complex hydrides with extreme flexibility in composition, structure and properties.

6.
Chemistry ; 23(41): 9766-9771, 2017 Jul 21.
Artigo em Inglês | MEDLINE | ID: mdl-28627715

RESUMO

A new complex ternary amide, Rb2 [Mn(NH2 )4 ], which simultaneously contains both transition and alkali metal catalytic sites, is developed. This is in line with the recently reported TM-LiH composite catalysts, which have been shown to effectively break the scaling relations and achieve ammonia synthesis under mild conditions. Rb2 [Mn(NH2 )4 ] can be facilely synthesized by mechanochemical reaction at room temperature. It exhibits two temperature-dependent polymorphs, that is, a low-temperature orthorhombic and a high-temperature monoclinic structure. Rb2 [Mn(NH2 )4 ] decomposes to N2 , H2 , NH3 , Mn3 N2 , and RbNH2 under inert atmosphere; whereas it releases NH3 at a temperature as low as 80 °C under H2 atmosphere. Those unique behaviors enable Rb2 [Mn(NH2 )4 ], and its analogue K2 [Mn(NH2 )4 ], to be excellent catalytic materials for ammonia decomposition and synthesis. Experimental results show both ammonia decomposition onset temperatures and conversion rates over Rb2 [Mn(NH2 )4 ] and K2 [Mn(NH2 )4 ] are similar to those of noble metal Ru-based catalysts. More importantly, these ternary amides exhibit superior capabilities in catalyzing NH3 synthesis, which are more than 3 orders of magnitude higher than that of Mn nitride and twice of that of Ru/MgO. The in situ SR-PXD measurement shows that manganese nitride, synergistic with Rb/KH or Rb/K(NH2 )x H1-x , are likely the active sites. The chemistry of Rb2 /K2 [Mn(NH2 )x ] and Rb/K(NH2 )x H1-x with H2 /N2 and NH3 correlates closely with the catalytic performance.

7.
Phys Chem Chem Phys ; 19(12): 8457-8464, 2017 Mar 22.
Artigo em Inglês | MEDLINE | ID: mdl-28287226

RESUMO

The doping effect of Sr(OH)2 on the Mg(NH2)2-2LiH system is investigated considering different amounts of added Sr(OH)2 in the range of 0.05 to 0.2 mol. Experimental results show that both the thermodynamic and the kinetic properties of Mg(NH2)2-2LiH are influenced by the presence of Sr(OH)2. The addition of 0.1 mol Sr(OH)2 leads to a decrease in both the dehydrogenation onset and peak temperatures of ca. 70 and 13 °C, respectively, and an acceleration in the de/re-hydrogenation rates of one time at 150 °C compared to Mg(NH2)2-2LiH alone. Based on differential scanning calorimetry (DSC) analysis, the overall reaction enthalpy of the 0.1 Sr(OH)2-doped sample is calculated to be 44 kJ per mol-H2 and there are two absorption events occurring in the doped sample instead of one in the pristine sample. For the applied experimental conditions, according to the in situ synchrotron radiation powder X-ray diffraction (SR-PXD) and Fourier Transform Infrared spectroscopy (FT-IR) analysis, the reaction mechanism has been finally defined: Sr(OH)2, Mg(NH2)2 and LiH react with each other to form SrO, MgO and LiNH2 during ball milling. After heating, SrO interacts with Mg(NH2)2 producing MgO and Sr(NH2)2. Then Mg(NH2)2, LiNH2 and Sr(NH2)2 react with LiH to produce Li2NH, SrNH, Li2Mg(NH)2 and Li2Mg2(NH)3 in traces. After re-hydrogenation, LiSrH3, LiH and LiNH2 are formed along with amorphous Mg(NH2)2. The reasons for the improved kinetics are: (a) during dehydrogenation, the in situ formation of SrNH appears to increase the interfacial contacts between Mg(NH2)2 and LiH and also weakens the N-H bond of Mg(NH2)2; (b) during absorption, the formation of LiSrH3 at around 150 °C could be the key factor for improving the hydrogenation properties.

8.
Phys Chem Chem Phys ; 19(47): 32105-32115, 2017 Dec 06.
Artigo em Inglês | MEDLINE | ID: mdl-29182181

RESUMO

The 6Mg(NH2)2-9LiH-LiBH4 composite system has a maximum reversible hydrogen content of 4.2 wt% and a predicted dehydrogenation temperature of about 64 °C at 1 bar of H2. However, the existence of severe kinetic barriers precludes the occurrence of de/re-hydrogenation processes at such a low temperature (H. Cao, G. Wu, Y. Zhang, Z. Xiong, J. Qiu and P. Chen, J. Mater. Chem. A, 2014, 2, 15816-15822). In this work, Li3N and YCl3 have been chosen as co-additives for this system. These additives increase the hydrogen storage capacity and hasten the de/re-hydrogenation kinetics: a hydrogen uptake of 4.2 wt% of H2 was achieved in only 8 min under isothermal conditions at 180 °C and 85 bar of H2 pressure. The re-hydrogenation temperature, necessary for a complete absorption process, can be lowered below 90 °C by increasing the H2 pressure above 185 bar. Moreover, the results indicate that the hydrogenation capacity and absorption kinetics can be maintained roughly constant over several cycles. Low operating temperatures, together with fast absorption kinetics and good reversibility, make this system a promising on-board hydrogen storage material. The reasons for the improved de/re-hydrogenation properties are thoroughly investigated and discussed.

9.
Phys Chem Chem Phys ; 17(41): 27328-42, 2015 Nov 07.
Artigo em Inglês | MEDLINE | ID: mdl-26418174

RESUMO

Designing safe, compact and high capacity hydrogen storage systems is the key step towards introducing a pollutant free hydrogen technology into a broad field of applications. Due to the chemical bonds of hydrogen-metal atoms, metal hydrides provide high energy density in safe hydrogen storage media. Reactive hydride composites (RHCs) are a promising class of high capacity solid state hydrogen storage systems. Ca(BH4)2 + MgH2 with a hydrogen content of 8.4 wt% is one of the most promising members of the RHCs. However, its relatively high desorption temperature of ∼350 °C is a major drawback to meeting the requirements for practical application. In this work, by using NbF5 as an additive, the dehydrogenation temperature of this RHC was significantly decreased. To elucidate the role of NbF5 in enhancing the desorption properties of the Ca(BH4)2 + MgH2 (Ca-RHC), a comprehensive investigation was carried out via manometric measurements, mass spectrometry, Differential Scanning Calorimetry (DSC), in situ Synchrotron Radiation-Powder X-ray Diffraction (SR-PXD), X-ray Absorption Spectroscopy (XAS), Anomalous Small-Angle X-ray Scattering (ASAXS), Scanning and Transmission Electron Microscopy (SEM, TEM) and Nuclear Magnetic Resonance (NMR) techniques.

10.
RSC Adv ; 11(37): 23122-23135, 2021 Jun 25.
Artigo em Inglês | MEDLINE | ID: mdl-35480441

RESUMO

Reversible solid-state hydrogen storage is one of the key technologies toward pollutant-free and sustainable energy conversion. The composite system LiBH4-MgH2 can reversibly store hydrogen with a gravimetric capacity of 13 wt%. However, its dehydrogenation/hydrogenation kinetics is extremely sluggish (∼40 h) which hinders its usage for commercial applications. In this work, the kinetics of this composite system is significantly enhanced (∼96%) by adding a small amount of NbF5. The catalytic effect of NbF5 on the dehydrogenation/hydrogenation process of LiBH4-MgH2 is systematically investigated using a broad range of experimental techniques such as in situ synchrotron radiation X-ray powder diffraction (in situ SR-XPD), X-ray absorption spectroscopy (XAS), anomalous small angle X-ray scattering (ASAXS), and ultra/small-angle neutron scattering (USANS/SANS). The obtained results are utilized to develop a model that explains the catalytic function of NbF5 in hydrogen release and uptake in the LiBH4-MgH2 composite system.

11.
Nanomaterials (Basel) ; 10(7)2020 Jun 28.
Artigo em Inglês | MEDLINE | ID: mdl-32605232

RESUMO

There are several techniques providing quantitative elemental analysis, but very few capable of identifying both the concentration and chemical state of elements. This study presents a systematic investigation of the properties of the X-rays emitted after the atomic capture of negatively charged muons. The probability rates of the muonic transitions possess sensitivity to the electronic structure of materials, thus making the muonic X-ray Emission Spectroscopy complementary to the X-ray Absorption and Emission techniques for the study of the chemistry of elements, and able of unparalleled analysis in case of elements bearing low atomic numbers. This qualitative method is applied to the characterization of light elements-based, energy-relevant materials involved in the reaction of hydrogen desorption from the reactive hydride composite Ca(BH4)2-Mg2NiH4. The origin of the influence of the band-structure on the muonic atom is discussed and the observed effects are attributed to the contribution of the electronic structure to the screening and to the momentum distribution in the muon cascade.

12.
Materials (Basel) ; 13(4)2020 Feb 22.
Artigo em Inglês | MEDLINE | ID: mdl-32098426

RESUMO

In this work, the possibility of creating a polymer-based adaptive scaffold for improving the hydrogen storage properties of the system 2LiH+MgB2+7.5(3TiCl3·AlCl3) was studied. Because of its chemical stability toward the hydrogen storage material, poly(4-methyl-1-pentene) or in-short TPXTM was chosen as the candidate for the scaffolding structure. The composite system was obtained after ball milling of 2LiH+MgB2+7.5(3TiCl3·AlCl3) and a solution of TPXTM in cyclohexane. The investigations carried out over the span of ten hydrogenation/de-hydrogenation cycles indicate that the material containing TPXTM possesses a higher degree of hydrogen storage stability.

13.
Sci Rep ; 10(1): 9080, 2020 Jun 03.
Artigo em Inglês | MEDLINE | ID: mdl-32493958

RESUMO

Rechargeable solid-state magnesium batteries are considered for high energy density storage and usage in mobile applications as well as to store energy from intermittent energy sources, triggering intense research for suitable electrode and electrolyte materials. Recently, magnesium borohydride, Mg(BH4)2, was found to be an effective precursor for solid-state Mg-ion conductors. During the mechanochemical synthesis of these Mg-ion conductors, amorphous Mg(BH4)2 is typically formed and it was postulated that this amorphous phase promotes the conductivity. Here, electrochemical impedance spectroscopy of as-received γ-Mg(BH4)2 and ball milled, amorphous Mg(BH4)2 confirmed that the conductivity of the latter is ~2 orders of magnitude higher than in as-received γ-Mg(BH4)2 at 353 K. Pair distribution function (PDF) analysis of the local structure shows striking similarities up to a length scale of 5.1 Å, suggesting similar conduction pathways in both the crystalline and amorphous sample. Up to 12.27 Å the PDF indicates that a 3D net of interpenetrating channels might still be present in the amorphous phase although less ordered compared to the as-received γ-phase. However, quasi elastic neutron scattering experiments (QENS) were used to study the rotational mobility of the [BH4] units, revealing a much larger fraction of activated [BH4] rotations in amorphous Mg(BH4)2. These findings suggest that the conduction process in amorphous Mg(BH4)2 is supported by stronger rotational mobility, which is proposed to be the so-called "paddle-wheel" mechanism.

14.
Sci Rep ; 10(1): 8, 2020 Jan 07.
Artigo em Inglês | MEDLINE | ID: mdl-31911604

RESUMO

The system Mg(NH2)2 + 2LiH is considered as an interesting solid-state hydrogen storage material owing to its low thermodynamic stability of ca. 40 kJ/mol H2 and high gravimetric hydrogen capacity of 5.6 wt.%. However, high kinetic barriers lead to slow absorption/desorption rates even at relatively high temperatures (>180 °C). In this work, we investigate the effects of the addition of K-modified LixTiyOz on the absorption/desorption behaviour of the Mg(NH2)2 + 2LiH system. In comparison with the pristine Mg(NH2)2 + 2LiH, the system containing a tiny amount of nanostructured K-modified LixTiyOz shows enhanced absorption/desorption behaviour. The doped material presents a sensibly reduced (∼30 °C) desorption onset temperature, notably shorter hydrogen absorption/desorption times and reversible hydrogen capacity of about 3 wt.% H2 upon cycling. Studies on the absorption/desorption processes and micro/nanostructural characterizations of the Mg(NH2)2 + 2LiH + K-modified LixTiyOz system hint to the fact that the presence of in situ formed nanostructure K2TiO3 is the main responsible for the observed improved kinetic behaviour.

15.
Dalton Trans ; 46(24): 7770-7781, 2017 Jun 28.
Artigo em Inglês | MEDLINE | ID: mdl-28590005

RESUMO

A series of ammine metal-dodecahydro-closo-dodecaboranes, MxB12H12·nNH3 (M = Li, Na, Ca) were synthesized and their structural and thermal properties studied with in situ time-resolved synchrotron radiation powder X-ray diffraction, thermal analysis, Fourier transformed infrared spectroscopy, and temperature-programmed photographic analysis. The synthesized compounds, Li2B12H12·7NH3, Na2B12H12·4NH3 and CaB12H12·6NH3, contain high amounts of NH3, 43.3, 26.6 and 35.9 wt% NH3, respectively, which can be released and absorbed reversibly at moderate conditions without decomposition, thereby making the closo-boranes favorable 'host' materials for ammonia or indirect hydrogen storage in the solid state. In this work, fifteen new ammine metal dodecahydro-closo-dodecaborane compounds are observed by powder X-ray diffraction, of which six are structurally characterized, Li2B12H12·4NH3, Li2B12H12·2NH3, Na2B12H12·4NH3, Na2B12H12·2NH3, CaB12H12·4NH3 and CaB12H12·3NH3. Li2B12H12·4NH3 and Na2B12H12·4NH3 are isostructural and monoclinic (P21/n) whereas Na2B12H12·2NH3 and CaB12H12·3NH3 are both trigonal with space groups P3[combining macron]m1 and R3[combining macron]c, respectively. Generally, coordination between the metal and the icosahedral closo-borane anion is diverse and includes point sharing, edge sharing, or face sharing, while coordination of ammonia always occurs via the lone pair on nitrogen to the metal. Furthermore, a liquid intermediate is observed during heating of Li2B12H12·7NH3. This work provides deeper insight into the structural, physical, and chemical properties related to thermal decomposition and possible ammonia and hydrogen storage.

16.
Chem Commun (Camb) ; 52(29): 5100-3, 2016 Apr 14.
Artigo em Inglês | MEDLINE | ID: mdl-26936831

RESUMO

K2[Mn(NH2)4] and K2[Zn(NH2)4] were successfully synthesized via a mechanochemical method. The mixture of K2[Mn(NH2)4] and LiH showed excellent rehydrogenation properties. In fact, after dehydrogenation K2[Mn(NH2)4]-8LiH fully rehydrogenates within 60 seconds at ca. 230 °C and 5 MPa of H2. This is one of the fastest rehydrogenation rates in amide-hydride systems known to date. This work also shows a strategy for the synthesis of transition metal nitrides by decomposition of the mixtures of M[M'(NH2)n] (where M is an alkali or alkaline earth metal and M' is a transition metal) and metal hydrides.

17.
Chem Commun (Camb) ; 52(79): 11760-11763, 2016 Sep 27.
Artigo em Inglês | MEDLINE | ID: mdl-27722247

RESUMO

We report for the first time the formation of a metal amide-hydride solid solution. The dissolution of KH into KNH2 leads to an anionic substitution, which decreases the interaction among NH2- ions. The rotational properties of the high temperature polymorphs of KNH2 are thereby retained down to room temperature.

18.
ChemSusChem ; 8(22): 3777-82, 2015 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-26463124

RESUMO

The alkali metal amidozincates Li4 [Zn(NH2)4](NH2)2 and K2[Zn(NH2)4] were, to the best of our knowledge, studied for the first time as hydrogen storage media. Compared with the LiNH2-2 LiH system, both Li4 [Zn(NH2)4](NH2)2-12 LiH and K2[Zn(NH2)4]-8 LiH systems showed improved rehydrogenation performance, especially K2[Zn(NH2)4]-8 LiH, which can be fully hydrogenated within 30 s at approximately 230 °C. The absorption properties are stable upon cycling. This work shows that ternary amides containing transition metals have great potential as hydrogen storage materials.


Assuntos
Amidas/química , Hidrogênio/química , Metais Alcalinos/química , Elementos de Transição/química , Zinco/química , Temperatura
19.
ACS Nano ; 4(7): 3903-8, 2010 Jul 27.
Artigo em Inglês | MEDLINE | ID: mdl-20533850

RESUMO

Hydrogen is recognized as a potential, extremely interesting energy carrier system, which can facilitate efficient utilization of unevenly distributed renewable energy. A major challenge in a future "hydrogen economy" is the development of a safe, compact, robust, and efficient means of hydrogen storage, in particular, for mobile applications. Here we report on a new concept for hydrogen storage using nanoconfined reversible chemical reactions. LiBH4 and MgH2 nanoparticles are embedded in a nanoporous carbon aerogel scaffold with pore size Dmax approximately 21 nm and react during release of hydrogen and form MgB2. The hydrogen desorption kinetics is significantly improved compared to bulk conditions, and the nanoconfined system has a high degree of reversibility and stability and possibly also improved thermodynamic properties. This new scheme of nanoconfined chemistry may have a wide range of interesting applications in the future, for example, within the merging area of chemical storage of renewable energy.

SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa