Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 15 de 15
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Appl Microbiol Biotechnol ; 106(11): 4075-4089, 2022 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-35622124

RESUMO

Understanding the mechanisms involved in tolerance to inhibitors is the first step in developing robust yeasts for industrial second-generation ethanol (E2G) production. Here, we used ultra-high-performance liquid chromatography tandem mass spectrometry (UHPLC-MS/MS) and MetaboAnalyst 4.0 for analysis of MS data to examine the changes in the metabolic profile of the yeast Spathaspora passalidarum during early fermentation of hemicellulosic hydrolysates containing high or low levels of inhibitors (referred to as control hydrolysate or CH and strategy hydrolysate or SH, respectively). During fermentation of SH, the maximum ethanol production was 16 g L-1 with a yield of 0.28 g g-1 and productivity of 0.22 g L-1 h-1, whereas maximum ethanol production in CH fermentation was 1.74 g L-1 with a yield of 0.11 g g-1 and productivity of 0.01 g L-1 h-1. The high level of inhibitors in CH induced complex physiological and biochemical responses related to stress tolerance in S. passalidarum. This yeast converted compounds with aldehyde groups (hydroxymethylfurfural, furfural, 4-hydroxybenzaldehyde, syringaldehyde, and vanillin) into less toxic compounds, and inhibitors were found to reduce cell viability and ethanol production. Intracellularly, high levels of inhibitors altered the energy homeostasis and redox balance, resulting in lower levels of ATP and NADPH, while that of glycolytic, pentose phosphate, and tricarboxylic acid (TCA) cycle pathways were the most affected, being the catabolism of glucogenic amino acids, the main cellular response to inhibitor-induced stress. This metabolomic investigation reveals interesting targets for metabolic engineering of ethanologenic yeast strains tolerant against multiple inhibitors for E2G production. KEY POINTS: • Inhibitors in the hydrolysates affected the yeast's redox balance and energy status. • Inhibitors altered the glycolytic, pentose phosphate, TCA cycle and amino acid pathways. • S. passalidarum converted aldehyde groups into less toxic compounds.


Assuntos
Saccharomyces cerevisiae , Xilose , Etanol/metabolismo , Fermentação , Fosfatos , Polissacarídeos , Saccharomyces cerevisiae/metabolismo , Saccharomycetales , Espectrometria de Massas em Tandem , Xilose/metabolismo
2.
BMC Biotechnol ; 17(1): 71, 2017 09 09.
Artigo em Inglês | MEDLINE | ID: mdl-28888227

RESUMO

BACKGROUND: Second-generation ethanol production is a clean bioenergy source with potential to mitigate fossil fuel emissions. The engineering of Saccharomyces cerevisiae for xylose utilization is an essential step towards the production of this biofuel. Though xylose isomerase (XI) is the key enzyme for xylose conversion, almost half of the XI genes are not functional when expressed in S. cerevisiae. To date, protein misfolding is the most plausible hypothesis to explain this phenomenon. RESULTS: This study demonstrated that XI from the bacterium Propionibacterium acidipropionici becomes functional in S. cerevisiae when co-expressed with GroEL-GroES chaperonin complex from Escherichia coli. The developed strain BTY34, harboring the chaperonin complex, is able to efficiently convert xylose to ethanol with a yield of 0.44 g ethanol/g xylose. Furthermore, the BTY34 strain presents a xylose consumption rate similar to those observed for strains carrying the widely used XI from the fungus Orpinomyces sp. In addition, the tetrameric XI structure from P. acidipropionici showed an elevated number of hydrophobic amino acid residues on the surface of protein when compared to XI commonly expressed in S. cerevisiae. CONCLUSIONS: Based on our results, we elaborate an extensive discussion concerning the uncertainties that surround heterologous expression of xylose isomerases in S. cerevisiae. Probably, a correct folding promoted by GroEL-GroES could solve some issues regarding a limited or absent XI activity in S. cerevisiae. The strains developed in this work have promising industrial characteristics, and the designed strategy could be an interesting approach to overcome the non-functionality of bacterial protein expression in yeasts.


Assuntos
Aldose-Cetose Isomerases/metabolismo , Chaperonina 60/genética , Proteínas de Escherichia coli/genética , Proteínas de Choque Térmico/genética , Engenharia de Proteínas/métodos , Saccharomyces cerevisiae/genética , Aldose-Cetose Isomerases/química , Aldose-Cetose Isomerases/genética , Chaperonina 60/metabolismo , Proteínas de Escherichia coli/metabolismo , Etanol/metabolismo , Proteínas de Choque Térmico/metabolismo , Modelos Moleculares , Propionibacterium/enzimologia , Conformação Proteica , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo , Saccharomyces cerevisiae/metabolismo , Xilose/metabolismo
3.
Appl Microbiol Biotechnol ; 100(1): 9-16, 2016 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-26476647

RESUMO

The lignocellulosic biomass, comprised mainly of cellulose, hemicellulose, and lignin, is a strong competitor for petroleum to obtain fuels and other products because of its renewable nature, low cost, and non-competitiveness with food production when obtained from agricultural waste. Due to its recalcitrance, lignocellulosic material requires an arsenal of enzymes for its deconstruction and the consequent release of fermentable sugars. In this context, enzymes currently classified as auxiliary activity 9 (AA9/formerly GH61) and 10 (AA10/formerly CBM 33) or lytic polysaccharide monooxygenases (LPMO) have emerged as cellulase boosting enzymes. AA9 and AA10 are the new paradigm for deconstruction of lignocellulosic biomass by enhancing the activity and decreasing the loading of classical enzymes to the reaction and, consequently, reducing costs of the hydrolysis step in the second-generation ethanol production chain. In view of that disclosed above, the goal of this work is to review experimental data that supports the relevance of AA9 and AA10 for the biomass deconstruction field.


Assuntos
Biocombustíveis , Biomassa , Glicosídeo Hidrolases/metabolismo , Lignina/metabolismo , Biotransformação
4.
World J Microbiol Biotechnol ; 28(3): 1087-95, 2012 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-22805830

RESUMO

A nonautonomous element of 624 bp, called RetroCl1 (Retroelement Colletotrichum lindemuthianum 1), was identified in the plant pathogenic fungus Colletotrichum lindemuthianum. RetroCl1 contains terminal direct repeats (223 bp) that are surrounded by CTAGT sequences. It has a short internal domain of 178 bp and shows characteristics of terminal-repeat retrotransposon in miniature (TRIM) family. We used RetroCl1 sequence to develop molecular markers for the Colletotrichum genus. IRAP (Inter-Retrotransposon Amplified Polymorphism) and REMAP (Retrotransposon-Microsatellite Amplified Polymorphism) markers were used to analyze the genetic diversity of C. lindemuthianum. Fifty-four isolates belonging to different races were used. A total of 45 loci were amplified. The Nei index showed significant differences among the populations divided according to race, indicating that they are structured according to pathotype. No clear correlation between IRAP and REMAP markers with pathogenic characterization was found. C. lindemuthianum has high genetic diversity, and the analysis of molecular variance showed that 51% of variability is found among the populations of different races. The markers were also tested in different Colletotrichum species. In every case, multiple bands were amplified, indicating that these markers can be successfully used in different species belonging to the Colletotrichum genus.


Assuntos
Colletotrichum/classificação , Colletotrichum/genética , DNA Fúngico/genética , Tipagem Molecular/métodos , Técnicas de Tipagem Micológica/métodos , Retroelementos , Sequência de Bases , Análise por Conglomerados , Genótipo , Dados de Sequência Molecular , Polimorfismo Genético
5.
Microbiol Res ; 260: 127017, 2022 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-35429801

RESUMO

The conversion of lignocellulosic polymers into monomeric sugars demands a plethora of enzymatic activities generally not produced by a single microorganism and induced by the carbon source. In this vein, this work investigates the synergy between the enzymes secreted by the cellulolytic model fungi Trichoderma reesei RUT-C30 (TR) and Penicillium oxalicum (PO) to deconstruct sugarcane straw (SCS) and energy cane bagasse (ECB). TR and PO secrete a similar profile of cellulose-active enzymes resulting in a comparable conversion of SCS and ECB into glucose. The synergy between the enzymes produced by both fungi to break down the cellulose fraction becomes evident by the improvement of glucose titers from ~35-54% and from ~10-17% in SCS and ECB conditions, respectively, reached with the mixture of the secretomes of both fungi. The effect of a hemicellulase-enriched secretome produced by TR is particularly seen in SCS where the xylose yield reached ~15% compared to 5% by PO, remaining unaltered following the mixture of secretomes. However, the secretion of enzymes active in the decorations of the main chain polymers possibly aid PO to access the hemicellulose fraction of ECB reaching xylose yields similar to TR in this condition.


Assuntos
Saccharum , Trichoderma , Biomassa , Bengala , Celulose/metabolismo , Glucose , Hypocreales , Penicillium , Saccharum/metabolismo , Secretoma , Trichoderma/metabolismo , Xilose
6.
Biotechnol Biofuels Bioprod ; 15(1): 57, 2022 May 20.
Artigo em Inglês | MEDLINE | ID: mdl-35596177

RESUMO

BACKGROUND: The need to mitigate and substitute the use of fossil fuels as the main energy matrix has led to the study and development of biofuels as an alternative. Second-generation (2G) ethanol arises as one biofuel with great potential, due to not only maintaining food security, but also as a product from economically interesting crops such as energy-cane. One of the main challenges of 2G ethanol is the inefficient uptake of pentose sugars by industrial yeast Saccharomyces cerevisiae, the main organism used for ethanol production. Understanding the main drivers for xylose assimilation and identify novel and efficient transporters is a key step to make the 2G process economically viable. RESULTS: By implementing a strategy of searching for present motifs that may be responsible for xylose transport and past adaptations of sugar transporters in xylose fermenting species, we obtained a classifying model which was successfully used to select four different candidate transporters for evaluation in the S. cerevisiae hxt-null strain, EBY.VW4000, harbouring the xylose consumption pathway. Yeast cells expressing the transporters SpX, SpH and SpG showed a superior uptake performance in xylose compared to traditional literature control Gxf1. CONCLUSIONS: Modelling xylose transport with the small data available for yeast and bacteria proved a challenge that was overcome through different statistical strategies. Through this strategy, we present four novel xylose transporters which expands the repertoire of candidates targeting yeast genetic engineering for industrial fermentation. The repeated use of the model for characterizing new transporters will be useful both into finding the best candidates for industrial utilization and to increase the model's predictive capabilities.

7.
Front Plant Sci ; 13: 947558, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36161018

RESUMO

Erythrina velutina is a Brazilian native tree of the Caatinga (a unique semiarid biome). It is widely used in traditional medicine showing anti-inflammatory and central nervous system modulating activities. The species is a rich source of specialized metabolites, mostly alkaloids and flavonoids. To date, genomic information, biosynthesis, and regulation of flavonoids remain unknown in this woody plant. As part of a larger ongoing research goal to better understand specialized metabolism in plants inhabiting the harsh conditions of the Caatinga, the present study focused on this important class of bioactive phenolics. Leaves and seeds of plants growing in their natural habitat had their metabolic and proteomic profiles analyzed and integrated with transcriptome data. As a result, 96 metabolites (including 43 flavonoids) were annotated. Transcripts of the flavonoid pathway totaled 27, of which EvCHI, EvCHR, EvCHS, EvCYP75A and EvCYP75B1 were identified as putative main targets for modulating the accumulation of these metabolites. The highest correspondence of mRNA vs. protein was observed in the differentially expressed transcripts. In addition, 394 candidate transcripts encoding for transcription factors distributed among the bHLH, ERF, and MYB families were annotated. Based on interaction network analyses, several putative genes of the flavonoid pathway and transcription factors were related, particularly TFs of the MYB family. Expression patterns of transcripts involved in flavonoid biosynthesis and those involved in responses to biotic and abiotic stresses were discussed in detail. Overall, these findings provide a base for the understanding of molecular and metabolic responses in this medicinally important species. Moreover, the identification of key regulatory targets for future studies aiming at bioactive metabolite production will be facilitated.

8.
Microb Biotechnol ; 14(5): 2101-2115, 2021 09.
Artigo em Inglês | MEDLINE | ID: mdl-34313008

RESUMO

The development of high-performance xylose-fermenting yeast is essential to achieve feasible conversion of biomass-derived sugars in lignocellulose-based biorefineries. However, engineered C5-strains of Saccharomyces cerevisiae still present low xylose consumption rates under anaerobic conditions. Here, we explore alternative metabolisms involved in metal homeostasis, which positively affect C5 fermentation and analyse the non-obvious regulatory network connection of both metabolisms using time-course transcriptome analysis. Our results indicated the vacuolar Fe2+ /Mn2+ transporter CCC1, and the protein involved in heavy metal ion homeostasis BSD2, as promising new targets for rational metabolic engineering strategies, enhancing xylose consumption in nine and 2.3-fold compared with control. Notably, intracellular metal concentration levels were affected differently by mutations and the results were compared with positive controls isu1Δ, a Fe-S cluster scaffold protein, and ssk2Δ, a component of HOG pathway. Temporal expression profiles indicate a metabolic remodelling in response to xylose, demonstrating changes in the main sugar sensing signalling pathways.


Assuntos
Proteínas de Transporte de Cátions , Proteínas de Saccharomyces cerevisiae , Biomassa , Fermentação , Engenharia Metabólica , Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/genética , Xilose
9.
J Adv Res ; 34: 123-136, 2021 12.
Artigo em Inglês | MEDLINE | ID: mdl-35024185

RESUMO

Introduction: Natural products of pharmaceutical interest often do not reach the drug market due to the associated low yields and difficult extraction. Knowledge of biosynthetic pathways is a key element in the development of biotechnological strategies for plant specialized metabolite production. Erythrina species are mainly used as central nervous system depressants in folk medicine and are important sources of bioactive tetracyclic benzylisoquinoline alkaloids (BIAs), which can act on several pathology-related biological targets. Objectives: In this sense, in an unprecedented approach used with a non-model Fabaceae species grown in its unique arid natural habitat, a combined transcriptome and metabolome analyses (seeds and leaves) is presented. Methods: The Next Generation Sequencing-based transcriptome (de novo RNA sequencing) was carried out in a NextSeq 500 platform. Regarding metabolite profiling, the High-resolution Liquid Chromatography was coupled to DAD and a micrOTOF-QII mass spectrometer by using electrospray ionization (ESI) and Time of Flight (TOF) analyzer. The tandem MS/MS data were processed and analyzed through Molecular Networking approach. Results: This detailed macro and micromolecular approach applied to seeds and leaves of E. velutina revealed 42 alkaloids, several of them unique. Based on the combined evidence, 24 gene candidates were put together in a putative pathway leading to the singular alkaloid diversity of this species. Conclusion: Overall, these results could contribute by indicating potential biotechnological targets for modulation of erythrina alkaloids biosynthesis as well as improve molecular databases with omic data from a non-model medicinal plant, and reveal an interesting chemical diversity of Erythrina BIA harvested in Caatinga.


Assuntos
Alcaloides , Erythrina , Perfilação da Expressão Gênica , Folhas de Planta/genética , Sementes/genética , Espectrometria de Massas em Tandem
10.
Biotechnol Biofuels ; 13: 145, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32818042

RESUMO

BACKGROUND: The need to restructure the world's energy matrix based on fossil fuels and mitigate greenhouse gas emissions stimulated the development of new biobased technologies for renewable energy. One promising and cleaner alternative is the use of second-generation (2G) fuels, produced from lignocellulosic biomass sugars. A major challenge on 2G technologies establishment is the inefficient assimilation of the five-carbon sugar xylose by engineered Saccharomyces cerevisiae strains, increasing fermentation time. The uptake of xylose across the plasma membrane is a critical limiting step and the budding yeast S. cerevisiae is not designed with a broad transport system and regulatory mechanisms to assimilate xylose in a wide range of concentrations present in 2G processes. RESULTS: Assessing diverse microbiomes such as the digestive tract of plague insects and several decayed lignocellulosic biomasses, we isolated several yeast species capable of using xylose. Comparative fermentations selected the yeast Candida sojae as a potential source of high-affinity transporters. Comparative genomic analysis elects four potential xylose transporters whose properties were evaluated in the transporter null EBY.VW4000 strain carrying the xylose-utilizing pathway integrated into the genome. While the traditional xylose transporter Gxf1 allows an improved growth at lower concentrations (10 g/L), strains containing Cs3894 and Cs4130 show opposite responses with superior xylose uptake at higher concentrations (up to 50 g/L). Docking and normal mode analysis of Cs4130 and Gxf1 variants pointed out important residues related to xylose transport, identifying key differences regarding substrate translocation comparing both transporters. CONCLUSIONS: Considering that xylose concentrations in second-generation hydrolysates can reach high values in several designed processes, Cs4130 is a promising novel candidate for xylose uptake. Here, we demonstrate a novel eukaryotic molecular transporter protein that improves growth at high xylose concentrations and can be used as a promising target towards engineering efficient pentose utilization in yeast.

11.
Genome Biol Evol ; 11(7): 1923-1938, 2019 07 01.
Artigo em Inglês | MEDLINE | ID: mdl-31070742

RESUMO

Xylose assimilation and fermentation are important traits for second generation ethanol production. However, some genomic features associated with this pentose sugar's metabolism remain unknown in yeasts. Comparative genomics studies have led to important insights in this field, but we are still far from completely understanding endogenous yeasts' xylose metabolism. In this work, we carried out a deep evolutionary analysis suited for comparative genomics of xylose-consuming yeasts, searching for of positive selection on genes associated with glucose and xylose metabolism in the xylose-fermenters' clade. Our investigation detected positive selection fingerprints at this clade not only among sequences of important genes for xylose metabolism, such as xylose reductase and xylitol dehydrogenase, but also in genes expected to undergo neutral evolution, such as the glycolytic gene phosphoglycerate mutase. In addition, we present expansion, positive selection marks, and convergence as evidence supporting the hypothesis that natural selection is shaping the evolution of the little studied methylglyoxal reductases. We propose a metabolic model suggesting that selected codons among these proteins caused a putative change in cofactor preference from NADPH to NADH that alleviates cellular redox imbalance. These findings provide a wider look into pentose metabolism of yeasts and add this previously overlooked piece into the intricate puzzle of oxidative imbalance. Although being extensively discussed in evolutionary works the awareness of selection patterns is recent in biotechnology researches, rendering insights to surpass the reached status quo in many of its subareas.


Assuntos
Xilitol/metabolismo , Xilose/metabolismo , Fermentação/genética , Fermentação/fisiologia , Genômica/métodos , Filogenia , Seleção Genética/genética , Seleção Genética/fisiologia
12.
Biotechnol Biofuels ; 12: 117, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31168322

RESUMO

BACKGROUND: Lytic polysaccharide monooxygenases (LPMOs) opened a new horizon for biomass deconstruction. They use a redox mechanism not yet fully understood and the range of substrates initially envisaged to be the crystalline polysaccharides is steadily expanding to non-crystalline ones. RESULTS: The enzyme KpLPMO10A from the actinomycete Kitasatospora papulosa was cloned and overexpressed in Escherichia coli cells in the functional form with native N-terminal. The enzyme can release oxidized species from chitin (C1-type oxidation) and cellulose (C1/C4-type oxidation) similarly to other AA10 members from clade II (subclade A). Interestingly, KpLPMO10A also cleaves isolated xylan (not complexed with cellulose, C4-type oxidation), a rare activity among LPMOs not described yet for the AA10 family. The synergistic effect of KpLPMO10A with Celluclast® and an endo-ß-1,4-xylanase also supports this finding. The crystallographic elucidation of KpLPMO10A at 1.6 Å resolution along with extensive structural analyses did not indicate any evident difference with other characterized AA10 LPMOs at the catalytic interface, tempting us to suggest that these enzymes might also be active on xylan or that the ability to attack both crystalline and non-crystalline substrates involves yet obscure mechanisms of substrate recognition and binding. CONCLUSIONS: This work expands the spectrum of substrates recognized by AA10 family, opening a new perspective for the understanding of the synergistic effect of these enzymes with canonical glycoside hydrolases to deconstruct ligno(hemi)cellulosic biomass.

13.
Microbiol Res ; 219: 110-122, 2019 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-30642461

RESUMO

Colletotrichum lindemuthianum, the causal agent of anthracnose, is responsible for significant damage in the common bean (Phaseolus vulgaris L.). Unraveling the genetic mechanisms involved in the plant/pathogen interaction is a powerful approach for devising efficient methods to control this disease. In the present study, we employed the Restriction Enzyme-Mediated Integration (REMI) methodology to identify the gene slnCl1, encoding a histidine kinase protein, as involved in pathogenicity. The mutant strain, MutCl1, generated by REMI, showed an insertion in the slnCl1 gene, deficiency of the production and melanization of appressoria, as well as the absence of pathogenicity on bean leaves when compared with the wild-type strain. The slnCl1 gene encodes a histidine kinase class IV called SlnCl1 showing identity of 97% and 83% with histidine kinases from Colletotrichum orbiculare and Colletotrichum gloesporioides, respectively. RNA interference was used for silencing the histidine kinase gene and confirm slnCl1 as a pathogenicity factor. Furthermore, we identified four major genes involved in the RNA interference-mediated gene silencing in Colletotrichum spp. and demonstrated the functionality of this process in C. lindemuthianum. Silencing of the EGFP reporter gene and slnCl1 were demonstrated using qPCR. This work reports for the first time the isolation and characterization of a HK in C. lindemuthianum and the occurrence of gene silencing mediated by RNA interference in this organism, demonstrating its potential use in the functional characterization of pathogenicity genes.


Assuntos
Colletotrichum/enzimologia , Colletotrichum/patogenicidade , Histidina Quinase/genética , Phaseolus/crescimento & desenvolvimento , Doenças das Plantas/microbiologia , Folhas de Planta/crescimento & desenvolvimento , Sequência de Aminoácidos , Colletotrichum/genética , Enzimas de Restrição do DNA/metabolismo , Histidina Quinase/metabolismo , Mutagênese Insercional , Phaseolus/microbiologia , Doenças das Plantas/terapia , Folhas de Planta/microbiologia , Interferência de RNA , RNA Interferente Pequeno/genética
14.
Genome Announc ; 4(1)2016 Jan 14.
Artigo em Inglês | MEDLINE | ID: mdl-26769937

RESUMO

Candida boidinii and Candida sojae yeasts were isolated from energy cane bagasse and plague-insects. Both have fast xylose uptake rate and produce great amounts of xylitol, which are interesting features for food and 2G ethanol industries. Because they lack published genomes, we have sequenced and assembled them, offering new possibilities for gene prospection.

15.
Sci Rep ; 6: 38676, 2016 12 21.
Artigo em Inglês | MEDLINE | ID: mdl-28000736

RESUMO

The development of biocatalysts capable of fermenting xylose, a five-carbon sugar abundant in lignocellulosic biomass, is a key step to achieve a viable production of second-generation ethanol. In this work, a robust industrial strain of Saccharomyces cerevisiae was modified by the addition of essential genes for pentose metabolism. Subsequently, taken through cycles of adaptive evolution with selection for optimal xylose utilization, strains could efficiently convert xylose to ethanol with a yield of about 0.46 g ethanol/g xylose. Though evolved independently, two strains carried shared mutations: amplification of the xylose isomerase gene and inactivation of ISU1, a gene encoding a scaffold protein involved in the assembly of iron-sulfur clusters. In addition, one of evolved strains carried a mutation in SSK2, a member of MAPKKK signaling pathway. In validation experiments, mutating ISU1 or SSK2 improved the ability to metabolize xylose of yeast cells without adaptive evolution, suggesting that these genes are key players in a regulatory network for xylose fermentation. Furthermore, addition of iron ion to the growth media improved xylose fermentation even by non-evolved cells. Our results provide promising new targets for metabolic engineering of C5-yeasts and point to iron as a potential new additive for improvement of second-generation ethanol production.


Assuntos
Engenharia Genética/métodos , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/metabolismo , Xilose/metabolismo , Sequência de Bases , Diploide , Evolução Molecular , Fermentação/efeitos dos fármacos , Genoma Fúngico , Heterozigoto , Homozigoto , Ferro/farmacologia , Cariótipo , Engenharia Metabólica , Nucleotídeos/genética , Mutação Puntual/genética , Polimorfismo de Nucleotídeo Único/genética , Proteínas de Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/metabolismo , Transformação Genética
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa