Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Int J Mol Sci ; 23(13)2022 Jun 21.
Artigo em Inglês | MEDLINE | ID: mdl-35805887

RESUMO

The severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) causing the coronavirus disease-19 (COVID-19) is still challenging healthcare systems and societies worldwide. While vaccines are available, therapeutic strategies are developing and need to be adapted to each patient. Many clinical approaches focus on the repurposing of approved therapeutics against other diseases. However, the efficacy of these compounds on viral infection or even harmful secondary effects in the context of SARS-CoV-2 infection are sparsely investigated. Similarly, adverse effects of commonly used therapeutics against lifestyle diseases have not been studied in detail. Using mono cell culture systems and a more complex chip model, we investigated the effects of the acetylsalicylic acid (ASA) salt D,L-lysine-acetylsalicylate + glycine (LASAG) on SARS-CoV-2 infection in vitro. ASA is commonly known as Aspirin® and is one of the most frequently used medications worldwide. Our data indicate an inhibitory effect of LASAG on SARS-CoV-2 replication and SARS-CoV-2-induced expression of pro-inflammatory cytokines and coagulation factors. Remarkably, our data point to an additive effect of the combination of LASAG and the antiviral acting drug remdesivir on SARS-CoV-2 replication in vitro.


Assuntos
Tratamento Farmacológico da COVID-19 , SARS-CoV-2 , Monofosfato de Adenosina/análogos & derivados , Alanina/análogos & derivados , Antivirais/farmacologia , Antivirais/uso terapêutico , Aspirina/farmacologia , Aspirina/uso terapêutico , Glicina/farmacologia , Glicina/uso terapêutico , Humanos , Lisina
2.
Microbiol Spectr ; : e0041723, 2023 Sep 13.
Artigo em Inglês | MEDLINE | ID: mdl-37702499

RESUMO

Herpes simplex virus type 1 (HSV-1) is a widespread contagious pathogen, mostly causing mild symptoms on the mucosal entry side. However, systemic distribution, in particular upon reactivation of the virus in immunocompromised patients, may trigger an innate immune response and induce damage of organs. In these conditions, HSV-1 may infect vascular endothelial cells, but little is known about the regulation of HSV-1 replication and possible defense mechanisms in these cells. The current study addresses the question of whether the host cell protein AMP-activated protein kinase (AMPK), an important metabolic sensor, can control HSV-1 replication in endothelial cells. We show that downregulation of the catalytic subunits AMPKα1 and/or AMPKα2 increased HSV-1 replication as monitored by TCID50 titrations, while a potent AMPK agonist, MK-8722, strongly inhibited it. MK-8722 induced a persistent phosphorylation of the AMPK downstream targets acetyl-CoA carboxylase (ACC) and the rapamycin-sensitive adaptor protein of mTOR (Raptor) and, related to this, impairment of ACC1-mediated lipid synthesis and the mechanistic target of the rapamycin complex-1 (mTORC1) pathway. Since blockade of mTOR by Torin-2 as well as downregulation of ACC1 by siRNA also decreased HSV-1 replication, MK-8722 is likely to exert its anti-viral effect via mTORC1 and ACC1 inhibition. Importantly, MK-8722 was able to reduce virus replication even when added after HSV-1. Together, our data highlight the importance of endothelial cells as host cells for HSV-1 replication upon systemic infection and identify AMPK, a metabolic host cell protein, as a potential target for antiviral strategies against HSV-1 infection and its severe consequences. IMPORTANCE Herpes simplex virus type 1 (HSV-1) is a common pathogen that causes blisters or cold sores in humans. It remains latent in infected individuals and can be reactivated multiple times. In adverse conditions, for instance, in immunocompromised patients, HSV-1 can lead to serious complications such as encephalitis, meningitis, or blindness. In these situations, infection of endothelial cells lining the surface of blood vessels may contribute to the manifestation of disease. Here, we describe the role of AMP-activated protein kinase (AMPK), a potent regulator of cellular energy metabolism, in HSV-1 replication in endothelial cells. While downregulation of AMPK potentiates HSV-1 replication, pharmacological AMPK activation inhibits it by limiting the availability of required host cell macromolecules such as proteins or fatty acids. These data highlight the role of metabolic host cell proteins as antiviral targets and reveal activation of endothelial AMPK as a potential strategy to protect from severe consequences of HSV-1 infection.

3.
Virus Res ; 276: 197835, 2020 01 15.
Artigo em Inglês | MEDLINE | ID: mdl-31821843

RESUMO

Infections with the herpes simplex virus type 1 (HSV-1) are common and widespread. Most infections remain undetected but severe forms may develop in newborns and in immunocompromised patients. Moreover, HSV-1 might be involved in the pathogenesis of atherosclerosis, which may include viral infection of the endothelium. Antiviral therapy is efficient to treat symptomatic patients. However, an increasing accumulation of resistance-associated mutations has been observed in the viral genome. Thus, new antiviral strategies are focused on host factors. Among others, signaling of bioactive sphingolipids seems to be important in mediating HSV-1 replication. With the present study, regulation and function of sphingosine-1-phosphate (S1P)-based signaling were analyzed in HSV-1-infected human umbilical vein endothelial cells (HUVEC). Our data indicate that viral replication in endothelial cells relies on sphingosine kinase (SK) activity and S1P receptor (S1PR)1,3-5 signaling, which involves the activation of phosphatidylinositol-3-kinase (PI3K) and the small GTPase Ras-related C3 botulinum toxin substrate 1 (Rac-1). Inhibitor- or siRNA-meditated reduction of Rac-1 activity decreased HSV-1 replication. In general, targeting S1P-related signaling may be a successful strategy to establish new anti-HSV-1 therapies.


Assuntos
Herpesvirus Humano 1/fisiologia , Interações entre Hospedeiro e Microrganismos , Células Endoteliais da Veia Umbilical Humana/metabolismo , Células Endoteliais da Veia Umbilical Humana/virologia , Lisofosfolipídeos/metabolismo , Transdução de Sinais , Esfingosina/análogos & derivados , Células Cultivadas , Herpesvirus Humano 1/genética , Humanos , Fosfatidilinositol 3-Quinases/metabolismo , Fosforilação , Fosfotransferases (Aceptor do Grupo Álcool)/metabolismo , Esfingolipídeos/metabolismo , Esfingosina/metabolismo , Replicação Viral
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa