Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 15 de 15
Filtrar
1.
Toxicol Appl Pharmacol ; 398: 115034, 2020 07 01.
Artigo em Inglês | MEDLINE | ID: mdl-32387183

RESUMO

2,3,7,8-Tetrachlorodibenzo-p-dioxin (TCDD) is a potent aryl hydrocarbon receptor (AhR) agonist that elicits a broad spectrum of dose-dependent hepatic effects including lipid accumulation, inflammation, and fibrosis. To determine the role of inflammatory lipid mediators in TCDD-mediated hepatotoxicity, eicosanoid metabolism was investigated. Female Sprague-Dawley (SD) rats were orally gavaged with sesame oil vehicle or 0.01-10 µg/kg TCDD every 4 days for 28 days. Hepatic RNA-Seq data was integrated with untargeted metabolomics of liver, serum, and urine, revealing dose-dependent changes in linoleic acid (LA) and arachidonic acid (AA) metabolism. TCDD also elicited dose-dependent differential gene expression associated with the cyclooxygenase, lipoxygenase, and cytochrome P450 epoxidation/hydroxylation pathways with corresponding changes in ω-6 (e.g. AA and LA) and ω-3 polyunsaturated fatty acids (PUFAs), as well as associated eicosanoid metabolites. Overall, TCDD increased the ratio of ω-6 to ω-3 PUFAs. Phospholipase A2 (Pla2g12a) was induced consistent with increased AA metabolism, while AA utilization by induced lipoxygenases Alox5 and Alox15 increased leukotrienes (LTs). More specifically, TCDD increased pro-inflammatory eicosanoids including leukotriene LTB4, and LTB3, known to recruit neutrophils to damaged tissue. Dose-response modeling suggests the cytochrome P450 hydroxylase/epoxygenase and lipoxygenase pathways are more sensitive to TCDD than the cyclooxygenase pathway. Hepatic AhR ChIP-Seq analysis found little enrichment within the regulatory regions of differentially expressed genes (DEGs) involved in eicosanoid biosynthesis, suggesting TCDD-elicited dysregulation of eicosanoid metabolism is a downstream effect of AhR activation. Overall, these results suggest alterations in eicosanoid metabolism may play a key role in TCDD-elicited hepatotoxicity associated with the progression of steatosis to steatohepatitis.


Assuntos
Eicosanoides/metabolismo , Ácidos Graxos Insaturados/metabolismo , Fígado/efeitos dos fármacos , Dibenzodioxinas Policloradas/farmacologia , Animais , Sistema Enzimático do Citocromo P-450/metabolismo , Ácidos Graxos Ômega-3/metabolismo , Fígado Gorduroso/metabolismo , Feminino , Metabolismo dos Lipídeos/efeitos dos fármacos , Fígado/metabolismo , Ratos , Ratos Sprague-Dawley , Receptores de Hidrocarboneto Arílico/metabolismo
2.
Mol Pharmacol ; 94(2): 876-884, 2018 08.
Artigo em Inglês | MEDLINE | ID: mdl-29752288

RESUMO

2,3,7,8-Tetrachlorodibenzo-p-dioxin (TCDD) induces hepatic oxidative stress following activation of the aryl hydrocarbon receptor (AhR). Our recent studies showed TCDD induced pyruvate kinase muscle isoform 2 (Pkm2) as a novel antioxidant response in normal differentiated hepatocytes. To investigate cooperative regulation between nuclear factor, erythroid derived 2, like 2 (Nrf2) and the AhR in the induction of Pkm2, hepatic chromatin immunoprecipitation sequencing (ChIP-seq) analyses were integrated with RNA sequencing (RNA-seq) time-course data from mice treated with TCDD for 2-168 hours. ChIP-seq analysis 2 hours after TCDD treatment identified genome-wide NRF2 enrichment. Approximately 842 NRF2-enriched regions were located in the regulatory region of differentially expressed genes (DEGs), whereas 579 DEGs showed both NRF2 and AhR enrichment. Sequence analysis of regions with overlapping NRF2 and AhR enrichment showed over-representation of either antioxidant or dioxin response elements, although 18 possessed both motifs. NRF2 exhibited negligible enrichment within a closed Pkm chromatin region, whereas the AhR was enriched 29-fold. Furthermore, TCDD induced Pkm2 in primary hepatocytes from wild-type and Nrf2-null mice, indicating NRF2 is not required. Although NRF2 and AhR cooperate to regulate numerous antioxidant gene expression responses, the induction of Pkm2 by TCDD is independent of reactive oxygen species-mediated NRF2 activation.


Assuntos
Redes Reguladoras de Genes/efeitos dos fármacos , Fígado/metabolismo , Fator 2 Relacionado a NF-E2/metabolismo , Dibenzodioxinas Policloradas/administração & dosagem , Piruvato Quinase/metabolismo , Receptores de Hidrocarboneto Arílico/metabolismo , Animais , Antioxidantes/metabolismo , Células Cultivadas , Imunoprecipitação da Cromatina , Hepatócitos/citologia , Hepatócitos/metabolismo , Fígado/efeitos dos fármacos , Camundongos , Estresse Oxidativo , Dibenzodioxinas Policloradas/farmacologia , Ligação Proteica , Análise de Sequência de RNA
3.
Arch Toxicol ; 90(2): 319-32, 2016 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-25417049

RESUMO

Polychlorinated biphenyls (PCBs) and their metabolites are environmental pollutants that are known to have adverse health effects. 1-(4-Chlorophenyl)-benzo-2,5-quinone (4-ClBQ), a quinone metabolite of 4-monochlorobiphenyl (PCB3, present in the environment and human blood) is toxic to human skin keratinocytes, and breast and prostate epithelial cells. This study investigates the hypothesis that 4-ClBQ-induced metabolic oxidative stress regulates toxicity in human keratinocytes. Results from Seahorse XF96 Analyzer showed that the 4-ClBQ treatment increased extracellular acidification rate, proton production rate, oxygen consumption rate and ATP content, indicative of metabolic oxidative stress. Results from a q-RT-PCR assay showed significant increases in the mRNA levels of hexokinase 2 (hk2), pyruvate kinase M2 (pkm2) and glucose-6-phosphate dehydrogenase (g6pd), and decreases in the mRNA levels of succinate dehydrogenase (complex II) subunit C and D (sdhc and sdhd). Pharmacological inhibition of G6PD-activity enhanced the toxicity of 4-ClBQ, suggesting that the protective function of the pentose phosphate pathway is functional in 4-ClBQ-treated cells. The decrease in sdhc and sdhd expression was associated with a significant decrease in complex II activity and increase in mitochondrial levels of ROS. Overexpression of sdhc and sdhd suppressed 4-ClBQ-induced inhibition of complex II activity, increase in mitochondrial levels of ROS, and toxicity. These results suggest that the 4-ClBQ treatment induces metabolic oxidative stress in HaCaT cells, and while the protective function of the pentose phosphate pathway is active, inhibition of complex II activity sensitizes HaCaT cells to 4-ClBQ-induced toxicity.


Assuntos
Benzoquinonas/toxicidade , Queratinócitos/efeitos dos fármacos , Estresse Oxidativo/efeitos dos fármacos , Succinato Desidrogenase/metabolismo , Trifosfato de Adenosina/metabolismo , Compostos de Bifenilo/toxicidade , Proteínas de Transporte/genética , Proteínas de Transporte/metabolismo , Linhagem Celular , Hexoquinase/metabolismo , Humanos , Queratinócitos/metabolismo , Proteínas de Membrana/genética , Proteínas de Membrana/metabolismo , Mitocôndrias/efeitos dos fármacos , Mitocôndrias/metabolismo , Via de Pentose Fosfato/efeitos dos fármacos , Succinato Desidrogenase/genética , Hormônios Tireóideos/genética , Hormônios Tireóideos/metabolismo , Proteínas de Ligação a Hormônio da Tireoide
4.
Environ Toxicol Chem ; 39(8): 1578-1589, 2020 08.
Artigo em Inglês | MEDLINE | ID: mdl-32388890

RESUMO

There is global concern regarding the fate and effects of microplastics in the environment, particularly in aquatic systems. In the present study, ethylene acrylic acid copolymer particles were evaluated in a chronic toxicity study with the aquatic invertebrate Daphnia magna. The study design included a natural particle control treatment (silica) to differentiate any potential physical effects of a particle from the intrinsic toxicity of the test material. In addition to the standard endpoints of survival, growth, and reproduction, the transcriptomic profiles of control and ethylene acrylic acid copolymer-exposed D. magna were evaluated at the termination of the 21-d toxicity study. No significant effects on D. magna growth, survival, or reproduction were observed in comparison with both particle and untreated control groups. Significant transcriptomic alterations were induced at the highest treatment level of 2.3 × 1012 particles of the ethylene acrylic acid copolymer/L in key pathways linked to central metabolism and energy reserves, oxidative stress, and ovulation and molting, indicating a global transcriptomic response pattern. To put the results in perspective is challenging at this time, because, to date, microplastic environmental monitoring approaches have not been equipped to detect particles in the nanosize range. However, our results indicate that ethylene acrylic acid copolymer microplastics in the upper nanosize range are not expected to adversely affect D. magna growth, survival, or reproductive outcomes at concentrations of up to 1012 particles/L. Environ Toxicol Chem 2020;39:1578-1589. © 2020 SETAC.


Assuntos
Daphnia/genética , Monitoramento Ambiental , Microplásticos/toxicidade , Polietileno/toxicidade , Transcriptoma/genética , Animais , Daphnia/efeitos dos fármacos , Feminino , Regulação da Expressão Gênica/efeitos dos fármacos , Reprodução/efeitos dos fármacos , Dióxido de Silício/química , Testes de Toxicidade Crônica , Transcriptoma/efeitos dos fármacos , Poluentes Químicos da Água/toxicidade
5.
Sci Rep ; 10(1): 14831, 2020 09 09.
Artigo em Inglês | MEDLINE | ID: mdl-32908189

RESUMO

2,3,7,8-Tetrachlorodibenzo-p-dioxin (TCDD), a persistent environmental contaminant, induces steatosis that can progress to steatohepatitis with fibrosis, pathologies that parallel stages in the development of non-alcoholic fatty liver disease (NAFLD). Coincidently, one carbon metabolism (OCM) gene expression and metabolites are often altered during NAFLD progression. In this study, the time- and dose-dependent effects of TCDD were examined on hepatic OCM in mice. Despite AhR ChIP-seq enrichment at 2 h, OCM gene expression was not changed within 72 h following a bolus dose of TCDD. Dose-dependent repression of methionine adenosyltransferase 1A (Mat1a), adenosylhomocysteinase (Achy) and betaine-homocysteine S-methyltransferase (Bhmt) mRNA and protein levels following repeated treatments were greater at 28 days compared to 8 days. Accordingly, levels of methionine, betaine, and homocysteic acid were dose-dependently increased, while S-adenosylmethionine, S-adenosylhomocysteine, and cystathionine exhibited non-monotonic dose-dependent responses consistent with regulation by OCM intermediates and repression of glycine N-methyltransferase (Gnmt). However, the dose-dependent effects on SAM-dependent metabolism of polyamines and creatine could not be directly attributed to alterations in SAM levels. Collectively, these results demonstrate persistent AhR activation disrupts hepatic OCM metabolism at the transcript, protein and metabolite levels within context of TCDD-elicited progression of steatosis to steatohepatitis with fibrosis.


Assuntos
Ácido Fólico/metabolismo , Fígado , Metionina/metabolismo , Hepatopatia Gordurosa não Alcoólica , Dibenzodioxinas Policloradas/toxicidade , Adenosil-Homocisteinase/metabolismo , Animais , Betaína-Homocisteína S-Metiltransferase/metabolismo , Carbono/metabolismo , Progressão da Doença , Fibrose , Glicina N-Metiltransferase/metabolismo , Fígado/metabolismo , Fígado/patologia , Metionina Adenosiltransferase/metabolismo , Camundongos , Camundongos Endogâmicos C57BL , Hepatopatia Gordurosa não Alcoólica/metabolismo , Hepatopatia Gordurosa não Alcoólica/patologia
6.
Sci Rep ; 9(1): 6514, 2019 04 24.
Artigo em Inglês | MEDLINE | ID: mdl-31015483

RESUMO

Aryl hydrocarbon receptor (AhR) activation is reported to alter the hepatic expression of circadian clock regulators, however the impact on clock-controlled metabolism has not been thoroughly investigated. This study examines the effects of AhR activation on hepatic transcriptome and metabolome rhythmicity in male C57BL/6 mice orally gavaged with 2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD) every 4 days for 28 days. TCDD diminished the rhythmicity of several core clock regulators (e.g. Arntl, Clock, Nr1d1, Per1, Cry1, Nfil3) in a dose-dependent manner, involving either a ≥ 3.3-fold suppression in amplitude or complete loss of oscillation. Accordingly, protein levels (ARNTL, REV-ERBα, NFIL3) and genomic binding (ARNTL) of select regulators were reduced and arrhythmic following treatment. As a result, the oscillating expression of 99.6% of 5,636 clock-controlled hepatic genes was abolished including genes associated with the metabolism of lipids, glucose/glycogen, and heme. For example, TCDD flattened expression of the rate-limiting enzymes in both gluconeogenesis (Pck1) and glycogenesis (Gys2), consistent with the depletion and loss of rhythmicity in hepatic glycogen levels. Examination of polar hepatic extracts by untargeted mass spectrometry revealed that virtually all oscillating metabolites lost rhythmicity following treatment. Collectively, these results suggest TCDD disrupted circadian regulation of hepatic metabolism, altering metabolic efficiency and energy storage.


Assuntos
Peptídeos e Proteínas de Sinalização do Ritmo Circadiano/genética , Perfilação da Expressão Gênica/métodos , Fígado/efeitos dos fármacos , Fígado/metabolismo , Metabolômica/métodos , Dibenzodioxinas Policloradas/farmacologia , Fatores de Transcrição ARNTL/genética , Fatores de Transcrição ARNTL/metabolismo , Animais , Metabolismo dos Carboidratos/efeitos dos fármacos , Metabolismo dos Carboidratos/genética , Peptídeos e Proteínas de Sinalização do Ritmo Circadiano/metabolismo , Poluentes Ambientais/farmacologia , Gluconeogênese/efeitos dos fármacos , Gluconeogênese/genética , Metabolismo dos Lipídeos/efeitos dos fármacos , Metabolismo dos Lipídeos/genética , Glicogênio Hepático/metabolismo , Masculino , Camundongos Endogâmicos C57BL , Periodicidade
7.
Mol Cancer Res ; 17(10): 2102-2114, 2019 10.
Artigo em Inglês | MEDLINE | ID: mdl-31337671

RESUMO

The clinical potential of pharmacologic ascorbate (P-AscH-; intravenous delivery achieving mmol/L concentrations in blood) as an adjuvant in cancer therapy is being reevaluated. At mmol/L concentrations, P-AscH- is thought to exhibit anticancer activity via generation of a flux of H2O2 in tumors, which leads to oxidative distress. Here, we use cell culture models of pancreatic cancer to examine the effects of P-AscH- on DNA damage, and downstream consequences, including changes in bioenergetics. We have found that the high flux of H2O2 produced by P-AscH- induces DNA damage. In response to this DNA damage, we observed that PARP1 is hyperactivated. Using our unique absolute quantitation, we found that P-AscH- mediated the overactivation of PARP1, which results in consumption of NAD+, and subsequently depletion of ATP leading to mitotic cell death. We have also found that Chk1 plays a major role in the maintenance of genomic integrity following treatment with P-AscH-. Hyperactivation of PARP1 and DNA repair are ATP-consuming processes. Using a Seahorse XF96 analyzer, we demonstrated that the severe decrease in ATP after challenging with P-AscH- is because of increased demand, not changes in the rate of production. Genetic deletion and pharmacologic inhibition of PARP1 preserved both NAD+ and ATP; however, the toxicity of P-AscH- remained. These data indicate that disruption of bioenergetics is a secondary factor in the toxicity of P-AscH-; damage to DNA appears to be the primary factor. IMPLICATIONS: Efforts to leverage P-AscH- in cancer therapy should first focus on DNA damage.


Assuntos
Ácido Ascórbico/farmacologia , Carcinoma Ductal Pancreático/tratamento farmacológico , Dano ao DNA , Neoplasias Pancreáticas/tratamento farmacológico , Animais , Carcinoma Ductal Pancreático/genética , Carcinoma Ductal Pancreático/metabolismo , Carcinoma Ductal Pancreático/patologia , Linhagem Celular Tumoral , Humanos , Peróxido de Hidrogênio/metabolismo , Camundongos , Camundongos Nus , Neoplasias Pancreáticas/genética , Neoplasias Pancreáticas/metabolismo , Neoplasias Pancreáticas/patologia , Poli(ADP-Ribose) Polimerase-1/metabolismo , Transfecção , Células Tumorais Cultivadas , Ensaios Antitumorais Modelo de Xenoenxerto
8.
Free Radic Biol Med ; 120: 356-367, 2018 05 20.
Artigo em Inglês | MEDLINE | ID: mdl-29601946

RESUMO

The high extracellular hydrogen peroxide (H2O2) concentrations generated during pharmacological ascorbate (P-AscH-) therapy has been shown to exhibit a high flux into susceptible cancer cells leading to a decrease in clonogenic survival. It is hypothesized that the intracellular H2O2 concentration for susceptibility is independent of cell type and that the variation observed in dosing is associated with differences in the cell-specific overall steady-state intracellular H2O2 concentration values. The steady-state variation in intracellular H2O2 concentration is coupled to a number of cellular specific transport and reaction factors including catalase activity and membrane permeability. Here a lumped-parameter mathematical modeling approach, assuming a catalase-dominant peroxide removal mechanism, is used to calculate intracellular H2O2 concentration for several cell lines. Experimental measurements of critical parameters pertaining to the model are obtained. The cell lines investigated are normal pancreatic cells, H6c7, the pancreatic cancer cell line, MIA PaCa-2 and the glioblastoma cell lines, LN-229, T98G, and U-87; all which vary in susceptibility. The intracellular H2O2 concentration estimates are correlated with the clonogenic surviving fraction for each cell line, in-vitro. The results showed that, despite the fact that the experimental parameters including catalase concentration and plasma membrane permeability demonstrated significant variability across cell lines, the calculated steady-state intracellular to extracellular H2O2 concentration ratio did not vary significantly across cell lines. Thus, the calculated intracellular H2O2 concentration is not unique in characterizing susceptibility. These results imply that, although intracellular H2O2 concentration plays a key role in cellular susceptibility to P-AscH- adjuvant therapy, its overall contribution in a unifying mechanism across cell types is complex.


Assuntos
Antineoplásicos/farmacologia , Ácido Ascórbico/farmacologia , Resistencia a Medicamentos Antineoplásicos/fisiologia , Peróxido de Hidrogênio/análise , Modelos Teóricos , Linhagem Celular Tumoral , Humanos
9.
Clin Exp Metastasis ; 35(1-2): 37-51, 2018 02.
Artigo em Inglês | MEDLINE | ID: mdl-29396728

RESUMO

HIF-1α is a transcriptional regulator that functions in the adaptation of cells to hypoxic conditions; it strongly impacts the prognosis of patients with cancer. High-dose, intravenous, pharmacological ascorbate (P-AscH-), induces cytotoxicity and oxidative stress selectively in cancer cells by acting as a pro-drug for the delivery of hydrogen peroxide (H2O2); early clinical data suggest improved survival and inhibition of metastasis in patients being actively treated with P-AscH-. Previous studies have demonstrated that activation of HIF-1α is necessary for P-AscH- sensitivity. We hypothesized that pancreatic cancer (PDAC) progression and metastasis could be be targeted by P-AscH- via H2O2-mediated inhibition of HIF-1α stabilization. Our study demonstrates an oxygen- and prolyl hydroxylase-independent regulation of HIF-1α by P-AscH-. Additionally, P-AscH- decreased VEGF secretion in a dose-dependent manner that was reversible with catalase, consistent with an H2O2-mediated mechanism. Pharmacological and genetic manipulations of HIF-1α did not alter P-AscH--induced cytotoxicity. In vivo, P-AscH- inhibited tumor growth and VEGF expression. We conclude that P-AscH- suppresses the levels of HIF-1α protein in hypoxic conditions through a post-translational mechanism. These findings suggest potential new therapies specifically designed to inhibit the mechanisms that drive metastases as a part of PDAC treatment.


Assuntos
Adenocarcinoma/metabolismo , Ácido Ascórbico/farmacologia , Subunidade alfa do Fator 1 Induzível por Hipóxia/antagonistas & inibidores , Neoplasias Pancreáticas/metabolismo , Adenocarcinoma/irrigação sanguínea , Adenocarcinoma/patologia , Animais , Ácido Ascórbico/administração & dosagem , Hipóxia Celular , Linhagem Celular Tumoral , Proliferação de Células/efeitos dos fármacos , Sobrevivência Celular/efeitos dos fármacos , Progressão da Doença , Relação Dose-Resposta a Droga , Humanos , Peróxido de Hidrogênio/metabolismo , Subunidade alfa do Fator 1 Induzível por Hipóxia/metabolismo , Camundongos , Camundongos Nus , Metástase Neoplásica , Neoplasias Pancreáticas/irrigação sanguínea , Neoplasias Pancreáticas/patologia , Prolil Hidroxilases/metabolismo , Processamento de Proteína Pós-Traducional/efeitos dos fármacos , Fator A de Crescimento do Endotélio Vascular/metabolismo
10.
Redox Biol ; 10: 274-284, 2016 12.
Artigo em Inglês | MEDLINE | ID: mdl-27833040

RESUMO

Ascorbate (AscH-) functions as a versatile reducing agent. At pharmacological doses (P-AscH-; [plasma AscH-] ≥≈20mM), achievable through intravenous delivery, oxidation of P-AscH- can produce a high flux of H2O2 in tumors. Catalase is the major enzyme for detoxifying high concentrations of H2O2. We hypothesize that sensitivity of tumor cells to P-AscH- compared to normal cells is due to their lower capacity to metabolize H2O2. Rate constants for removal of H2O2 (kcell) and catalase activities were determined for 15 tumor and 10 normal cell lines of various tissue types. A differential in the capacity of cells to remove H2O2 was revealed, with the average kcell for normal cells being twice that of tumor cells. The ED50 (50% clonogenic survival) of P-AscH- correlated directly with kcell and catalase activity. Catalase activity could present a promising indicator of which tumors may respond to P-AscH-.


Assuntos
Antioxidantes/administração & dosagem , Ácido Ascórbico/administração & dosagem , Peróxido de Hidrogênio/metabolismo , Neoplasias Pancreáticas/tratamento farmacológico , Células A549 , Animais , Antioxidantes/farmacologia , Ácido Ascórbico/farmacologia , Catalase/metabolismo , Linhagem Celular Tumoral , Células Hep G2 , Humanos , Camundongos , Estresse Oxidativo/efeitos dos fármacos , Neoplasias Pancreáticas/metabolismo , Ensaios Antitumorais Modelo de Xenoenxerto
11.
PLoS One ; 10(7): e0132572, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-26172833

RESUMO

BACKGROUND: The biological consequences upon exposure of cells in culture to a dose of xenobiotic are not only dependent on biological variables, but also the physical aspects of experiments e.g. cell number and media volume. Dependence on physical aspects is often overlooked due to the unrecognized ambiguity in the dominant metric used to express exposure, i.e. initial concentration of xenobiotic delivered to the culture medium over the cells. We hypothesize that for many xenobiotics, specifying dose as moles per cell will reduce this ambiguity. Dose as moles per cell can also provide additional information not easily obtainable with traditional dosing metrics. METHODS: Here, 1,4-benzoquinone and oligomycin A are used as model compounds to investigate moles per cell as an informative dosing metric. Mechanistic insight into reactions with intracellular molecules, differences between sequential and bolus addition of xenobiotic and the influence of cell volume and protein content on toxicity are also investigated. RESULTS: When the dose of 1,4-benzoquinone or oligomycin A was specified as moles per cell, toxicity was independent of the physical conditions used (number of cells, volume of medium). When using moles per cell as a dose-metric, direct quantitative comparisons can be made between biochemical or biological endpoints and the dose of xenobiotic applied. For example, the toxicity of 1,4-benzoquinone correlated inversely with intracellular volume for all five cell lines exposed (C6, MDA-MB231, A549, MIA PaCa-2, and HepG2). CONCLUSIONS: Moles per cell is a useful and informative dosing metric in cell culture. This dosing metric is a scalable parameter that: can reduce ambiguity between experiments having different physical conditions; provides additional mechanistic information; allows direct comparison between different cells; affords a more uniform platform for experimental design; addresses the important issue of repeatability of experimental results, and could increase the translatability of information gained from in vitro experiments.


Assuntos
Avaliação Pré-Clínica de Medicamentos/métodos , Xenobióticos/administração & dosagem , Benzoquinonas/administração & dosagem , Benzoquinonas/toxicidade , Contagem de Células , Linhagem Celular , Tamanho Celular , Relação Dose-Resposta a Droga , Avaliação Pré-Clínica de Medicamentos/estatística & dados numéricos , Glutationa/metabolismo , Células Hep G2 , Humanos , Modelos Biológicos , Oligomicinas/administração & dosagem , Oligomicinas/toxicidade , Concentração Osmolar , Proteínas/metabolismo , Reprodutibilidade dos Testes , Xenobióticos/toxicidade
12.
Free Radic Biol Med ; 83: 227-37, 2015 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-25725418

RESUMO

Pharmacological ascorbate (AscH(-)) selectively induces cytotoxicity in pancreatic cancer cells vs normal cells via the generation of extracellular hydrogen peroxide (H2O2), producing double-stranded DNA breaks and ultimately cell death. Catalytic manganoporphyrins (MnPs) can enhance ascorbate-induced cytotoxicity by increasing the rate of AscH(-) oxidation and therefore the rate of generation of H2O2. We hypothesized that combining MnPs and AscH(-) with the chemotherapeutic agent gemcitabine would further enhance pancreatic cancer cell cytotoxicity without increasing toxicity in normal pancreatic cells or other organs. Redox-active MnPs were combined with AscH(-) and administered with or without gemcitabine to human pancreatic cancer cell lines, as well as immortalized normal pancreatic ductal epithelial cells. The MnPs MnT2EPyP (Mn(III)meso-tetrakis(N-ethylpyridinium-2-yl) porphyrin pentachloride) and MnT4MPyP (Mn(III)tetrakis(N-methylpyridinium-4-yl) porphyrin pentachloride) were investigated. Clonogenic survival was significantly decreased in all pancreatic cancer cell lines studied when treated with MnP + AscH(-) + gemcitabine, whereas nontumorigenic cells were resistant. The concentration of ascorbate radical (Asc(•-), an indicator of oxidative flux) was significantly increased in treatment groups containing MnP and AscH(-). Furthermore, MnP + AscH(-) increased double-stranded DNA breaks in gemcitabine-treated cells. These results were abrogated by extracellular catalase, further supporting the role of the flux of H2O2. In vivo growth was inhibited and survival increased in mice treated with MnT2EPyP, AscH(-), and gemcitabine without a concomitant increase in systemic oxidative stress. These data suggest a promising role for the use of MnPs in combination with pharmacologic AscH(-) and chemotherapeutics in pancreatic cancer.


Assuntos
Antimetabólitos Antineoplásicos/farmacologia , Apoptose/efeitos dos fármacos , Ácido Ascórbico/farmacologia , Desoxicitidina/análogos & derivados , Metaloporfirinas/farmacologia , Neoplasias Pancreáticas/tratamento farmacológico , Neoplasias Pancreáticas/patologia , Animais , Catalase/metabolismo , Catálise , Desoxicitidina/farmacologia , Sinergismo Farmacológico , Imunofluorescência , Sequestradores de Radicais Livres/farmacologia , Histonas/metabolismo , Humanos , Peróxido de Hidrogênio/metabolismo , Camundongos , Camundongos Nus , Oxirredução , Estresse Oxidativo/efeitos dos fármacos , Consumo de Oxigênio/efeitos dos fármacos , Ensaios Antitumorais Modelo de Xenoenxerto , Gencitabina
13.
Cancer Res ; 75(16): 3314-26, 2015 Aug 15.
Artigo em Inglês | MEDLINE | ID: mdl-26081808

RESUMO

The toxicity of pharmacologic ascorbate is mediated by the generation of H2O2 via the oxidation of ascorbate. Because pancreatic cancer cells are sensitive to H2O2 generated by ascorbate, they would also be expected to become sensitized to agents that increase oxidative damage such as ionizing radiation. The current study demonstrates that pharmacologic ascorbate enhances the cytotoxic effects of ionizing radiation as seen by decreased cell viability and clonogenic survival in all pancreatic cancer cell lines examined, but not in nontumorigenic pancreatic ductal epithelial cells. Ascorbate radiosensitization was associated with an increase in oxidative stress-induced DNA damage, which was reversed by catalase. In mice with established heterotopic and orthotopic pancreatic tumor xenografts, pharmacologic ascorbate combined with ionizing radiation decreased tumor growth and increased survival, without damaging the gastrointestinal tract or increasing systemic changes in parameters indicative of oxidative stress. Our results demonstrate the potential clinical utility of pharmacologic ascorbate as a radiosensitizer in the treatment of pancreatic cancer.


Assuntos
Ácido Ascórbico/farmacologia , Neoplasias Pancreáticas/terapia , Radiossensibilizantes/farmacologia , Ensaios Antitumorais Modelo de Xenoenxerto , Animais , Antioxidantes/farmacologia , Linhagem Celular , Linhagem Celular Tumoral , Sobrevivência Celular/efeitos dos fármacos , Sobrevivência Celular/genética , Sobrevivência Celular/efeitos da radiação , Quimiorradioterapia , Dano ao DNA , Relação Dose-Resposta à Radiação , Glutationa/metabolismo , Dissulfeto de Glutationa/metabolismo , Humanos , Peróxido de Hidrogênio/metabolismo , Estimativa de Kaplan-Meier , Modelos Lineares , Camundongos Nus , Estresse Oxidativo/efeitos dos fármacos , Estresse Oxidativo/efeitos da radiação , Neoplasias Pancreáticas/genética , Neoplasias Pancreáticas/metabolismo , Radiação Ionizante , Carga Tumoral/efeitos dos fármacos , Carga Tumoral/genética , Carga Tumoral/efeitos da radiação
14.
Radiat Res ; 182(4): 420-9, 2014 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-25229973

RESUMO

Cellular quiescence is a reversible growth arrest in which cells retain their ability to enter into and exit from the proliferative cycle. This study investigates the hypothesis that cell growth-state specific oxidative stress response regulates radiosensitivity of cancer cells. Results showed that quiescent (low proliferative index; >75% G1 phase and lower RNA content) Cal27 and FaDu human head and neck squamous cell carcinoma (HNSCC) are radioresistant compared to proliferating cells. Quiescent cells exhibited a three to tenfold increase in mRNA levels of Mn-superoxide dismutase (MnSOD), dual oxidase 2 (DUOX2) and dual-specificity phosphatase 1 (DUSP1), while mRNA levels of catalase (CAT), peroxiredoxin 3 (PRDX3) and C-C motif ligand 5 (CCL5) were approximately two to threefold lower compared to proliferating cells. mRNA levels of forkhead box M1 (FOXM1) showed the largest decrease in quiescent cells at approximately 18-fold. Surprisingly, radiation treatment resulted in a distinct gene expression pattern that is specific to proliferating and quiescent cells. Specifically, FOXM1 expression increased two to threefold in irradiated quiescent cells, while the same treatment had no net effect on FOXM1 mRNA expression in proliferating cells. RNA interference and pharmacological-based downregulation of FOXM1 abrogated radioresistance of quiescent cells. Furthermore, radioresistance of quiescent cells was associated with an increase in glucose consumption and expression of glucose-6-phosphate dehydrogenase (G6PD). Knockdown of FOXM1 resulted in a significant decrease in G6PD expression, and pharmacological-inhibition of G6PD sensitized quiescent cells to radiation. Taken together, these results suggest that targeting FOXM1 may overcome radioresistance of quiescent HNSCC.


Assuntos
Carcinoma de Células Escamosas/patologia , Ciclo Celular/efeitos da radiação , Fatores de Transcrição Forkhead/metabolismo , Neoplasias de Cabeça e Pescoço/patologia , Tolerância a Radiação/efeitos da radiação , Ciclo Celular/efeitos dos fármacos , Linhagem Celular Tumoral , Proliferação de Células/efeitos dos fármacos , Proliferação de Células/efeitos da radiação , Proteína Forkhead Box M1 , Fatores de Transcrição Forkhead/antagonistas & inibidores , Fatores de Transcrição Forkhead/genética , Regulação Neoplásica da Expressão Gênica/efeitos dos fármacos , Regulação Neoplásica da Expressão Gênica/efeitos da radiação , Humanos , Via de Pentose Fosfato/efeitos dos fármacos , Via de Pentose Fosfato/efeitos da radiação , Tolerância a Radiação/efeitos dos fármacos , Carcinoma de Células Escamosas de Cabeça e Pescoço , Tioestreptona/farmacologia
15.
Free Radic Biol Med ; 76: 107-13, 2014 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-25108189

RESUMO

Red blood cells (RBCs) collected for transfusion deteriorate during storage. This deterioration is termed the "RBC storage lesion." There is increasing concern over the safety, therapeutic efficacy, and toxicity of transfusing longer-stored units of blood. The severity of the RBC storage lesion is dependent on storage time and varies markedly between individuals. Oxidative damage is considered a significant factor in the development of the RBC storage lesion. In this study, the variability during storage and heritability of antioxidants and metabolites central to RBC integrity and function were investigated. In a classic twin study, we determined the heritability of glutathione (GSH), glutathione disulfide (GSSG), the status of the GSSG,2H(+)/2GSH couple (Ehc), and total glutathione (tGSH) in donated RBCs over 56 days of storage. Intracellular GSH and GSSG concentrations both decrease during storage (median net loss of 0.52 ± 0.63 mM (median ± SD) and 0.032 ± 0.107 mM, respectively, over 42 days). Taking into account the decline in pH, Ehc became more positive (oxidized) during storage (median net increase of 35 ± 16 mV). In our study population heritability estimates for GSH, GSSG, tGSH, and Ehc measured over 56 days of storage are 79, 60, 67, and, 75%, respectively. We conclude that susceptibility of stored RBCs to oxidative injury due to variations in the GSH redox buffer is highly variable among individual donors and strongly heritable. Identifying the genes that regulate the storage-related changes in this redox buffer could lead to the development of new methods to minimize the RBC storage lesion.


Assuntos
Eritrócitos/química , Dissulfeto de Glutationa/genética , Glutationa/genética , Característica Quantitativa Herdável , Gêmeos Dizigóticos/genética , Gêmeos Monozigóticos/genética , Adolescente , Adulto , Preservação de Sangue , Cromatografia Líquida de Alta Pressão , Feminino , Glutationa/análise , Dissulfeto de Glutationa/análise , Humanos , Masculino , Pessoa de Meia-Idade , Oxirredução , Adulto Jovem
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa