Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 15 de 15
Filtrar
1.
Cell ; 160(4): 729-744, 2015 Feb 12.
Artigo em Inglês | MEDLINE | ID: mdl-25679764

RESUMO

Signaling through RAS/MAP kinase pathway is central to biology. ERK has long been perceived as the only substrate for MEK. Here, we report that HSF1, the master regulator of the proteotoxic stress response, is a new MEK substrate. Beyond mediating cell-environment interactions, the MEK-HSF1 regulation impacts malignancy. In tumor cells, MEK blockade inactivates HSF1 and thereby provokes proteomic chaos, presented as protein destabilization, aggregation, and, strikingly, amyloidogenesis. Unlike their non-transformed counterparts, tumor cells are particularly susceptible to proteomic perturbation and amyloid induction. Amyloidogenesis is tumor suppressive, reducing in vivo melanoma growth and contributing to the potent anti-neoplastic effects of proteotoxic stressors. Our findings unveil a key biological function of the oncogenic RAS-MEK signaling in guarding proteostasis and suppressing amyloidogenesis. Thus, proteomic instability is an intrinsic feature of malignant state, and disrupting the fragile tumor proteostasis to promote amyloidogenesis may be a feasible therapeutic strategy.


Assuntos
Amiloide/metabolismo , Proteínas de Ligação a DNA/metabolismo , Quinases de Proteína Quinase Ativadas por Mitógeno/metabolismo , Neoplasias/metabolismo , Estabilidade Proteica , Fatores de Transcrição/metabolismo , Animais , Linhagem Celular Tumoral , Feminino , Fatores de Transcrição de Choque Térmico , Humanos , Camundongos , Camundongos Endogâmicos NOD , Camundongos SCID , Transplante de Neoplasias , Fosforilação , Agregados Proteicos , Proteoma/metabolismo , Transplante Heterólogo
2.
J Immunol ; 205(8): 2026-2038, 2020 10 15.
Artigo em Inglês | MEDLINE | ID: mdl-32938729

RESUMO

It has become increasingly appreciated that autoimmune responses against neuronal components play an important role in type 1 diabetes (T1D) pathogenesis. In fact, a large proportion of islet-infiltrating B lymphocytes in the NOD mouse model of T1D produce Abs directed against the neuronal type III intermediate filament protein peripherin. NOD-PerIg mice are a previously developed BCR-transgenic model in which virtually all B lymphocytes express the H and L chain Ig molecules from the intra-islet-derived anti-peripherin-reactive hybridoma H280. NOD-PerIg mice have accelerated T1D development, and PerIg B lymphocytes actively proliferate within islets and expand cognitively interactive pathogenic T cells from a pool of naive precursors. We now report adoptively transferred T cells or whole splenocytes from NOD-PerIg mice expectedly induce T1D in NOD.scid recipients but, depending on the kinetics of disease development, can also elicit a peripheral neuritis (with secondary myositis). This neuritis was predominantly composed of CD4+ and CD8+ T cells. Ab depletion studies showed neuritis still developed in the absence of NOD-PerIg CD8+ T cells but required CD4+ T cells. Surprisingly, sciatic nerve-infiltrating CD4+ cells had an expansion of IFN-γ- and TNF-α- double-negative cells compared with those within both islets and spleen. Nerve and islet-infiltrating CD4+ T cells also differed by expression patterns of CD95, PD-1, and Tim-3. Further studies found transitory early B lymphocyte depletion delayed T1D onset in a portion of NOD-PerIg mice, allowing them to survive long enough to develop neuritis outside of the transfer setting. Together, this study presents a new model of peripherin-reactive B lymphocyte-dependent autoimmune neuritis.


Assuntos
Diabetes Mellitus Experimental , Diabetes Mellitus Tipo 1 , Tecido Nervoso , Neurite Autoimune Experimental , Pâncreas , Animais , Linfócitos T CD4-Positivos/patologia , Linfócitos T CD8-Positivos/imunologia , Linfócitos T CD8-Positivos/patologia , Diabetes Mellitus Experimental/genética , Diabetes Mellitus Experimental/imunologia , Diabetes Mellitus Experimental/patologia , Diabetes Mellitus Tipo 1/genética , Diabetes Mellitus Tipo 1/imunologia , Camundongos , Camundongos Endogâmicos NOD , Camundongos SCID , Camundongos Transgênicos , Tecido Nervoso/imunologia , Tecido Nervoso/patologia , Neurite Autoimune Experimental/genética , Neurite Autoimune Experimental/imunologia , Neurite Autoimune Experimental/patologia , Pâncreas/imunologia , Pâncreas/patologia
3.
Physiol Genomics ; 53(9): 406-415, 2021 09 01.
Artigo em Inglês | MEDLINE | ID: mdl-34378418

RESUMO

Chronic lithium treatment for bipolar disease causes mainly side effects in the kidney. A subset of lithium users develops nephrogenic diabetes insipidus (NDI), a urinary concentrating disorder, and chronic kidney disease (CKD). Age, lithium dose, and duration of treatment are important risk factors, whereas genetic background might also play an important role. To investigate the role of genetics, female mice of 29 different inbred strains were treated for 1 year with control or lithium chow and urine, blood, and kidneys were analyzed. Chronic lithium treatment increased urine production and/or reduced urine osmolality in 21 strains. Renal histology showed that lithium increased interstitial fibrosis and/or tubular atrophy in eight strains, whereas in none of the strains glomerular injury was induced. Interestingly, lithium did not elevate urinary albumin-creatinine ratio (ACR) in any strain, whereas eight strains even demonstrated a lowered ACR. The protective effect on ACR coincided with a similar decrease in urinary IgG levels, a marker of glomerular function, whereas the adverse effect of lithium on interstitial fibrosis/tubular atrophy coincided with a severe increase in urinary ß2-microglobulin (ß2M) levels, an indicator of proximal tubule damage. Genetic background plays an important role in the development of lithium-induced NDI and chronic renal pathology in female mice. The strong correlation of renal pathology with urinary ß2M levels indicates that ß2M is a promising biomarker for chronic renal damage induced by lithium.


Assuntos
Diabetes Insípido Nefrogênico/induzido quimicamente , Diabetes Insípido Nefrogênico/genética , Patrimônio Genético , Lítio/efeitos adversos , Insuficiência Renal Crônica/induzido quimicamente , Insuficiência Renal Crônica/genética , Animais , Biomarcadores/urina , Transtorno Bipolar/tratamento farmacológico , Diabetes Insípido Nefrogênico/sangue , Diabetes Insípido Nefrogênico/urina , Modelos Animais de Doenças , Feminino , Imunoglobulina G/urina , Lítio/sangue , Lítio/uso terapêutico , Camundongos , Camundongos Endogâmicos , Insuficiência Renal Crônica/sangue , Insuficiência Renal Crônica/urina , Microglobulina beta-2/urina
4.
Vet Pathol ; 58(1): 181-204, 2021 01.
Artigo em Inglês | MEDLINE | ID: mdl-33208054

RESUMO

Immunocompromised mouse strains expressing human transgenes are being increasingly used in biomedical research. The genetic modifications in these mice cause various cellular responses, resulting in histologic features unique to each strain. The NSG-SGM3 mouse strain is similar to the commonly used NSG (NOD scid gamma) strain but expresses human transgenes encoding stem cell factor (also known as KIT ligand), granulocyte-macrophage colony-stimulating factor, and interleukin 3. This report describes 3 histopathologic features seen in these mice when they are unmanipulated or after transplantation with human CD34+ hematopoietic stem cells (HSCs), virally transduced hCD34+ HSCs, or a leukemia patient-derived xenograft. The first feature is mast cell hyperplasia: unmanipulated, naïve mice develop periductular pancreatic aggregates of murine mast cells, whereas mice given the aforementioned human cells develop a proliferative infiltrative interstitial pancreatic mast cell hyperplasia but with human mast cells. The second feature is the predisposition of NSG-SGM3 mice given these human cells to develop eosinophil hyperplasia. The third feature, secondary hemophagocytic lymphohistiocytosis/macrophage activation syndrome (HLH/MAS)-like disease, is the most pronounced in both its clinical and histopathologic presentations. As part of this disease, a small number of mice also have histiocytic infiltration of the brain and spinal cord with subsequent neurologic or vestibular signs. The presence of any of these features can confound accurate histopathologic interpretation; therefore, it is important to recognize them as strain characteristics and to differentiate them from what may be experimentally induced in the model being studied.


Assuntos
Transplante de Células-Tronco Hematopoéticas , Leucemia , Linfo-Histiocitose Hemofagocítica , Síndrome de Ativação Macrofágica , Doenças dos Roedores , Animais , Eosinófilos , Transplante de Células-Tronco Hematopoéticas/veterinária , Células-Tronco Hematopoéticas , Xenoenxertos , Humanos , Hiperplasia/veterinária , Leucemia/veterinária , Linfo-Histiocitose Hemofagocítica/veterinária , Síndrome de Ativação Macrofágica/veterinária , Mastócitos , Camundongos , Camundongos Endogâmicos NOD , Camundongos SCID
5.
Vet Pathol ; 56(1): 157-168, 2019 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-30222063

RESUMO

Beginning in 2015, athymic nude sentinel mice from conventional, medium-, and high-security facilities presented to the Comparative Pathology Laboratory (CPL) with weight loss, diarrhea, and/or rectal prolapse. Regardless of whether clinical signs were present or absent, the gross observation of ceco-colonic thickening corresponded histologically to pleocellular typhlocolitis with mucosal hyperplasia and lamina proprial multinucleated cells. A subset of affected sentinels exhibited granulomatous serositis and hepatosplenic necrosis with multinucleated cells. Initial suspicion of mouse hepatitis virus infection was excluded by polymerase chain reaction, electron microscopy, and serology. Multinucleated giant cells were confirmed as macrophages by positive immunoreactivity to Mac-3 and Iba-1 and negative immunoreactivity to pancytokeratin. From conventional and medium-security facilities, Helicobacter species were identified in 40 of 143 (27.9%) mice, with H. hepaticus accounting for 72.5% of identified Helicobacter species. Other agents included opportunistic bacterial infection (41/145, 28.3%), murine norovirus (16/106, 15.1%), and pinworms (2/146, 1.4%). From high-security facilities, only Enterobacter cloacae was identified (2/13, 15.4%), and no evidence of Helicobacter sp., murine norovirus, or pinworms was present. No potentially infectious disease agent(s) was identified in 71 of 146 (48.6%) affected nude sentinels from conventional and medium-security facilities and 11 of 13 (84.6%) affected nude sentinels from high-security facilities. No statistically significant differences in histologic lesion scores were identified between Helicobacter-positive and Helicobacter-negative mice. Thus, proliferative typhlocolitis with multinucleated giant cells was considered a nonspecific histologic pattern associated with a variety of primary and opportunistic pathogens in athymic nude mice.


Assuntos
Doenças Inflamatórias Intestinais/veterinária , Animais , Ceco/patologia , Colo/patologia , Helicobacter , Doenças Inflamatórias Intestinais/patologia , Camundongos , Camundongos Nus , Vigilância de Evento Sentinela
6.
Kidney Int ; 85(6): 1461-8, 2014 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-24522496

RESUMO

A spontaneous mutation termed bilateral wasting kidneys (bwk) was identified in a colony of NONcNZO recombinant inbred mice. These mice exhibit a rapid increase of urinary albumin at an early age associated with glomerulosclerosis, interstitial nephritis, and tubular atrophy. The mutation was mapped to a location on chromosome 1 containing the Col4a3 and Col4a4 genes, for which mutations in the human orthologs cause the hereditary nephritis Alport syndrome. DNA sequencing identified a G-to-A mutation in the conserved GT splice donor of Col4a4 intron 30, resulting in skipping of exon 30 but maintaining the mRNA reading frame. Protein analyses showed that mutant collagen α3α4α5(IV) trimers were secreted and incorporated into the glomerular basement membrane (GBM), but levels were low, and GBM lesions typical of Alport syndrome were observed. Moving the mutation into the more renal damage-prone DBA/2J and 129S1/SvImJ backgrounds revealed differences in albuminuria and its rate of increase, suggesting an interaction between the Col4a4 mutation and modifier genes. This novel mouse model of Alport syndrome is the only one shown to accumulate abnormal collagen α3α4α5(IV) in the GBM, as also found in a subset of Alport patients. These mice will be valuable for testing potential therapies, for understanding abnormal collagen IV structure and assembly, and for gaining better insights into the mechanisms leading to Alport syndrome, and to the variability in the age of onset and associated phenotypes.


Assuntos
Autoantígenos/genética , Autoantígenos/metabolismo , Colágeno Tipo IV/genética , Colágeno Tipo IV/metabolismo , Membrana Basal Glomerular/metabolismo , Mutação , Nefrite Hereditária/genética , Nefrite Hereditária/metabolismo , Albuminúria/genética , Albuminúria/metabolismo , Animais , Modelos Animais de Doenças , Feminino , Regulação da Expressão Gênica , Predisposição Genética para Doença , Membrana Basal Glomerular/patologia , Masculino , Camundongos da Linhagem 129 , Camundongos Endogâmicos DBA , Nefrite Hereditária/patologia , Fenótipo , Multimerização Proteica , RNA Mensageiro/metabolismo , Fatores de Tempo
7.
Hum Mol Genet ; 21(20): 4431-47, 2012 Oct 15.
Artigo em Inglês | MEDLINE | ID: mdl-22802075

RESUMO

A number of mouse models for spinal muscular atrophy (SMA) have been genetically engineered to recapitulate the severity of human SMA by using a targeted null mutation at the mouse Smn1 locus coupled with the transgenic addition of varying copy numbers of human SMN2 genes. Although this approach has been useful in modeling severe SMA and very mild SMA, a mouse model of the intermediate form of the disease would provide an additional research tool amenable for drug discovery. In addition, many of the previously engineered SMA strains are multi-allelic by design, containing a combination of transgenes and targeted mutations in the homozygous state, making further genetic manipulation difficult. A new genetic engineering approach was developed whereby variable numbers of SMN2 sequences were incorporated directly into the murine Smn1 locus. Using combinations of these alleles, we generated an allelic series of SMA mouse strains harboring no, one, two, three, four, five, six or eight copies of SMN2. We report here the characterization of SMA mutants in this series that displayed a range in disease severity from embryonic lethal to viable with mild neuromuscular deficits.


Assuntos
Atrofia Muscular Espinal/genética , Junção Neuromuscular/genética , Alelos , Animais , Comportamento Animal , Modelos Animais de Doenças , Genótipo , Humanos , Camundongos , Camundongos Endogâmicos , Junção Neuromuscular/metabolismo , Fenótipo , Proteína 1 de Sobrevivência do Neurônio Motor/genética , Proteína 1 de Sobrevivência do Neurônio Motor/metabolismo , Proteína 2 de Sobrevivência do Neurônio Motor/genética , Proteína 2 de Sobrevivência do Neurônio Motor/metabolismo
8.
PLoS One ; 18(6): e0287204, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37363910

RESUMO

Tarsal joint abnormalities have been observed in aged male mice on a C57BL background. This joint disease consists of calcaneal displacement, inflammation, and proliferation of cartilage and connective tissue, that can progress to ankylosis of the joint. While tarsal pathology has been described previously in C57BL/6N substrains, as well as in STR/ort and B10.BR strain, no current literature describes this disease occurring in C57BL/6J mice. More importantly the behavioral features that may result from such a change to the joint have yet to be evaluated. This condition was observed in older male mice of the C57BL/6J lineage, around the age of 20 weeks or older, at a frequency of 1% of the population. To assess potential phenotypic sequela, this study sought to evaluate body weight, frailty assessment, home cage wheel running, dynamic weight bearing, and mechanical allodynia with and without the presence of pain relief with morphine. Overall mice with tarsal injuries had significantly higher frailty scores (p< 0.05) and weighed less (p<0.01) compared to unaffected mice. Affected mice had greater overall touch sensitivity (p<0.05) and they placed more weight on their forelimbs (p<0.01) compared to their hind limbs. Lastly, when housed with a running wheel, affected mice ran for a shorter length of time (p<0.01) but tended to run a greater distance within the time they did run (p<0.01) compared to unaffected mice. When tested just after being given morphine, the affected mice performed more similarly to unaffected mice, suggesting there is a pain sensation to this disease process. This highlights the importance of further characterizing inbred mouse mutations, as they may impact research programs or specific study goals.


Assuntos
Fragilidade , Atividade Motora , Camundongos , Masculino , Animais , Camundongos Endogâmicos C57BL , Morfina , Dor
9.
Aging Cell ; 21(9): e13666, 2022 09.
Artigo em Inglês | MEDLINE | ID: mdl-35986566

RESUMO

Rapamycin treatment has positive and negative effects on progression of type 2 diabetes (T2D) in a recombinant inbred polygenic mouse model, male NONcNZO10/LtJ (NcZ10). Here, we show that combination treatment with metformin ameliorates negative effects of rapamycin while maintaining its benefits. From 12 to 30 weeks of age, NcZ10 males were fed a control diet or diets supplemented with rapamycin, metformin, or a combination of both. Rapamycin alone reduced weight gain, adiposity, HOMA-IR, and inflammation, and prevented hyperinsulinemia and pre-steatotic hepatic lipidosis, but exacerbated hyperglycemia, hypertriglyceridemia, and pancreatic islet degranulation. Metformin alone reduced hyperinsulinemia and circulating c-reactive protein, but exacerbated nephropathy. Combination treatment retained the benefits of both while preventing many of the deleterious effects. Importantly, the combination treatment reversed effects of rapamycin on markers of hepatic insulin resistance and normalized systemic insulin sensitivity in this inherently insulin-resistant model. In adipose tissue, rapamycin attenuated the expression of genes associated with adipose tissue expansion (Mest, Gpam), inflammation (Itgam, Itgax, Hmox1, Lbp), and cell senescence (Serpine1). In liver, the addition of metformin counteracted rapamycin-induced alterations of G6pc, Ppara, and Ldlr expressions that promote hyperglycemia and hypertriglyceridemia. Both rapamycin and metformin treatment reduced hepatic Fasn expression, potentially preventing lipidosis. These results delineate a state of "insulin signaling restriction" that withdraws endocrine support for further adipogenesis, progression of the metabolic syndrome, and the development of its comorbidities. Our results are relevant for the treatment of T2D, the optimization of current rapamycin-based treatments for posttransplant rejection and various cancers, and for the development of treatments for healthy aging.


Assuntos
Diabetes Mellitus Experimental , Diabetes Mellitus Tipo 2 , Fígado Gorduroso , Hiperglicemia , Hiperinsulinismo , Hipertrigliceridemia , Resistência à Insulina , Síndrome Metabólica , Metformina , Animais , Diabetes Mellitus Experimental/metabolismo , Diabetes Mellitus Tipo 2/complicações , Diabetes Mellitus Tipo 2/tratamento farmacológico , Diabetes Mellitus Tipo 2/metabolismo , Hiperglicemia/complicações , Hiperinsulinismo/complicações , Hipertrigliceridemia/complicações , Hipoglicemiantes/farmacologia , Inflamação/complicações , Insulina/metabolismo , Masculino , Síndrome Metabólica/complicações , Síndrome Metabólica/tratamento farmacológico , Metformina/farmacologia , Metformina/uso terapêutico , Camundongos , Sirolimo/farmacologia , Sirolimo/uso terapêutico
10.
Cancer Immunol Immunother ; 60(10): 1461-72, 2011 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-21656158

RESUMO

Adoptive transfer of tumor-specific T cells has shown some success for treating metastatic melanoma. We evaluated a novel strategy to improve adoptive therapy by administering both T cells and oncolytic myxoma virus to mice with syngeneic B16.SIY melanoma brain tumors. Adoptive transfer of activated CD8(+) 2C T cells that recognize SIY peptide doubled survival time, but SIY-negative tumors recurred. Myxoma virus killed B16.SIY cells in vitro, and intratumoral injection of virus led to selective and transient infection of the tumor. Virus treatment recruited innate immune cells to the tumor and induced IFNß production in the brain, resulting in limited oncolytic effects in vivo. To counter this, we evaluated the safety and efficacy of co-administering 2C T cells, myxoma virus, and either rapamycin or neutralizing antibodies against IFNß. Mice that received either triple combination therapy survived significantly longer with no apparent side effects, but eventually relapsed. Importantly, rapamycin treatment did not impair T cell-mediated tumor destruction, supporting the feasibility of combining adoptive immunotherapy and rapamycin-enhanced virotherapy. Myxoma virus may be a useful vector for transient delivery of therapeutic genes to a tumor to enhance T cell responses.


Assuntos
Antineoplásicos/uso terapêutico , Neoplasias Encefálicas/terapia , Imunoterapia Adotiva/métodos , Melanoma Experimental/terapia , Terapia Viral Oncolítica/métodos , Sirolimo/uso terapêutico , Animais , Neoplasias Encefálicas/imunologia , Neoplasias Encefálicas/patologia , Linfócitos T CD8-Positivos/transplante , Melanoma Experimental/imunologia , Melanoma Experimental/patologia , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Myxoma virus
11.
Genes Cancer ; 11(1-2): 83-94, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32577159

RESUMO

Known as the guardian of the genome, transformation-related protein 53 (TRP53) is a well -known tumor suppressor. Here, we describe a novel TRP53 deficient mouse model on a tumor prone background-SJL/J mice. The absence of TRP53 (TRP53 nullizygosity) leads to a shift in the tumor spectrum from a non-Hodgkin's-like disease to thymic lymphomas and testicular teratomas at a very rapid tumor onset averaging ~12 weeks of age. In haplotype studies, comparing tumor prone versus tumor resistant Trp53 null mouse strains, we found that other tumor suppressor, DNA repair and/or immune system genes modulate tumor incidence in TRP53 null strains, suggesting that even a strong tumor suppressor such as TRP53 is modulated by genetic background. Due to their rapid development of tumors, the SJL/J TRP53 null mice generated here can be used as an efficient chemotherapy or immunotherapy screening mouse model.

12.
PLoS One ; 15(6): e0230162, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32542000

RESUMO

Dislocation in hindlimb tarsals are being observed at a low, but persistent frequency in group-housed adult male mice from C57BL/6N substrains. Clinical signs included a sudden onset of mild to severe unilateral or bilateral tarsal abduction, swelling, abnormal hindlimb morphology and lameness. Contraction of digits and gait abnormalities were noted in multiple cases. Radiographical and histological examination revealed caudal dislocation of the calcaneus and partial dislocation of the calcaneoquartal (calcaneus-tarsal bone IV) joint. The detection, frequency, and cause of this pathology in five large mouse production and phenotyping centres (MRC Harwell, UK; The Jackson Laboratory, USA; The Centre for Phenogenomics, Canada; German Mouse Clinic, Germany; Baylor College of Medicine, USA) are discussed.


Assuntos
Criação de Animais Domésticos/instrumentação , Internacionalidade , Ossos do Tarso/lesões , Animais , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Ossos do Tarso/diagnóstico por imagem , Tomografia Computadorizada por Raios X
13.
PLoS One ; 12(12): e0189485, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-29244860

RESUMO

Glycogen synthase kinase 3 (GSK3) plays an important role in the development of diabetes mellitus and renal injury. GSK3 inhibition increases glucose uptake in insulin-insensitive muscle and adipose tissue, while it reduces albuminuria and glomerulosclerosis in acute kidney injury. The effect of chronic GSK3 inhibition in diabetic nephropathy is not known. We tested the effect of lithium, the only clinical GSK3 inhibitor, on the development of diabetes mellitus and kidney injury in a mouse model of diabetic nephropathy. Twelve-week old female BTBR-ob/ob mice were treated for 12 weeks with 0, 10 and 40 mmol LiCl/kg after which the development of diabetes and diabetic nephropathy were analysed. In comparison to BTBR-WT mice, ob/ob mice demonstrated elevated bodyweight, increased blood glucose/insulin levels, urinary albumin and immunoglobulin G levels, glomerulosclerosis, reduced nephrin abundance and a damaged proximal tubule brush border. The lithium-10 and -40 diets did not affect body weight and resulted in blood lithium levels of respectively <0.25 mM and 0.48 mM. The Li-40 diet fully rescued the elevated non-fasting blood glucose levels. Importantly, glomerular filtration rate was not affected by lithium, while urine albumin and immunoglobulin G content were further elevated. While lithium did not worsen the glomerulosclerosis, proximal tubule function seemed affected by lithium, as urinary NGAL levels were significantly increased. These results demonstrate that lithium attenuates non-fasting blood glucose levels in diabetic mice, but aggravates urinary albumin and immunoglobulin G content, possibly resulting from proximal tubule dysfunction.


Assuntos
Albuminúria/tratamento farmacológico , Diabetes Mellitus Tipo 2/tratamento farmacológico , Nefropatias Diabéticas/prevenção & controle , Hipoglicemiantes/farmacologia , Cloreto de Lítio/farmacologia , Albuminúria/etiologia , Animais , Glicemia , Diabetes Mellitus Tipo 2/sangue , Diabetes Mellitus Tipo 2/complicações , Nefropatias Diabéticas/sangue , Avaliação Pré-Clínica de Medicamentos , Feminino , Quinase 3 da Glicogênio Sintase/metabolismo , Hipoglicemiantes/uso terapêutico , Rim/efeitos dos fármacos , Rim/enzimologia , Rim/patologia , Cloreto de Lítio/uso terapêutico , Camundongos Obesos
14.
PLoS One ; 9(12): e114324, 2014.
Artigo em Inglês | MEDLINE | ID: mdl-25473963

RESUMO

While rapamycin treatment has been reported to have a putatively negative effect on glucose homeostasis in mammals, it has not been tested in polygenic models of type 2 diabetes. One such mouse model, NONcNZO10/LtJ, was treated chronically with rapamycin (14 ppm encapsulated in diet) and monitored for the development of diabetes. As expected, rapamycin treatment accelerated the onset and severity of hyperglycemia. However, development of nephropathy was ameliorated, as both glomerulonephritis and IgG deposition in the subendothelial tuft were markedly reduced. Insulin production and secretion appeared to be inhibited, suppressing the developing hyperinsulinemia present in untreated controls. Rapamycin treatment also reduced body weight gain. Thus, rapamycin reduced some of the complications of diabetes despite elevating hyperglycemia. These results suggest that multiple factors must be evaluated when assessing the benefit vs. hazard of rapamycin treatment in patients that have overt, or are at risk for, type 2 diabetes. Testing of rapamycin in combination with insulin sensitizers is warranted, as such compounds may ameliorate the putative negative effects of rapamycin in the type 2 diabetes environment.


Assuntos
Diabetes Mellitus Tipo 2/tratamento farmacológico , Nefropatias Diabéticas/tratamento farmacológico , Hiperglicemia/tratamento farmacológico , Sirolimo/administração & dosagem , Animais , Glicemia , Diabetes Mellitus Tipo 2/complicações , Diabetes Mellitus Tipo 2/genética , Diabetes Mellitus Tipo 2/patologia , Nefropatias Diabéticas/etiologia , Nefropatias Diabéticas/genética , Nefropatias Diabéticas/patologia , Modelos Animais de Doenças , Feminino , Humanos , Hiperglicemia/genética , Hiperglicemia/patologia , Hiperinsulinismo/genética , Hiperinsulinismo/patologia , Insulina/metabolismo , Secreção de Insulina , Masculino , Camundongos
15.
Oncolytic Virother ; 2: 1-17, 2013 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-25866742

RESUMO

Two recombinant myxoma viruses (MYXV expressing a fluorescent protein [MYXV-Tred] and MYXV-Tred encoding murine interleukin-15 [MYXV-IL15]) were evaluated for therapeutic effects in an aggressive B16F10 melanoma model in immunocompetent mice. It was hypothesized that continuous expression of IL-15 within a tumor would recruit cytotoxic effector cells to induce an antitumor immune response and improve treatment efficacy. Weekly intratumoral injections were given to evaluate the effect of treatment on the median survival time of C57BL/6 mice bearing established B16F10 melanomas. Mice that received MYXV-Tred or MYXV-IL15 lived significantly longer than mice given treatment controls. Unexpectedly, the median survival time of MYXV-IL15-treated mice was similar to that of MYXV-treated mice. At 1, 2, and 4 days postinoculation, viral plaque assays detected replicating MYXV-Tred and MYXV-IL15 within treated tumors. At these time points in MYXV-IL15-treated tumors, IL-15 concentration, lymphocyte grades, and cluster of differentiation-3+ cell counts were significantly increased when compared to other treatment groups. However, viral titers, recombinant protein expression, and lymphocyte numbers within the tumors diminished rapidly at 7 days postinoculation. These data indicate that treatment with recombinant MYXV should be repeated at least every 4 days to maintain recombinant protein expression within a murine tumor. Additionally, neutrophilic inflammation was significantly increased in MYXV-Tred- and MYXV-IL15-treated tumors at early time points. It is speculated that neutrophilic inflammation induced by intratumoral replication of recombinant MXYV contributes to the antitumoral effect of MYXV treatment in this melanoma model. These findings support the inclusion of neutrophil chemotaxins in recombinant poxvirus oncolytic virotherapy.

SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa