Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 65
Filtrar
1.
J Pediatr ; 266: 113878, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38135031

RESUMO

Current recommendations advise against blood transfusion in hemodynamically stable children with iron deficiency anemia. In an observational study of 125 children aged 6 through 36 months, hospitalized with iron deficiency anemia, we found that hemoglobin level predicted red blood cell transfusion (area under the curve 0.8862). A hemoglobin of 39 g/L had sensitivity 92% and specificity 72% for transfusion.


Assuntos
Anemia Ferropriva , Pré-Escolar , Humanos , Anemia Ferropriva/terapia , Transfusão de Sangue , Transfusão de Eritrócitos , Hemoglobinas/análise , Lactente
2.
Biochem Biophys Res Commun ; 679: 15-22, 2023 10 30.
Artigo em Inglês | MEDLINE | ID: mdl-37659274

RESUMO

Contrast-induced acute kidney injury (CI-AKI) has become the third leading cause of AKI acquired in hospital, lacking of effective interventions. In the study, we identified the renal beneficial role of 2, 2-dimethylthiazolidine hydrochloride (DMTD), a safer compound which is readily hydrolyzed to cysteamine, in the rodent model of CI-AKI. Our data showed that administration of DMTD attenuated the impaired renal function and tubular injury induced by the contrast agent. Levels of MDA, 4-hydroxynonenal, ferrous iron and morphological signs showed that contrast agent induced ferroptosis, which could be inhibited in the DMTD group. In vitro, DMTD suppressed ferroptosis induced by ioversol in the cultured tubular cells. Treatment of DMTD upregulated glutathione (GSH) and glutathione peroxidase 4 (GPX4). Moreover, we found that DMTD promoted the ubiquitin-mediated proteasomal degradation of Keap1, and thus increased the activity of nuclear factor erythroid 2-related factor 2 (Nrf2). Mechanistically, increase of the ubiquitylation degradation of Keap1 mediates the upregulated effect of DMTD on Nrf2. Consequently, activated Nrf2/Slc7a11 results in the increase of GSH and GPX4, and therefore leads to the inhibition of ferroptosis. Herein, we imply DMTD as a potential therapeutic agent for the treatment of CI-AKI.


Assuntos
Injúria Renal Aguda , Ferroptose , Humanos , Proteína 1 Associada a ECH Semelhante a Kelch , Meios de Contraste , Fator 2 Relacionado a NF-E2 , Glutationa , Injúria Renal Aguda/induzido quimicamente , Injúria Renal Aguda/prevenção & controle
3.
Crit Care Med ; 51(9): 1124-1137, 2023 09 01.
Artigo em Inglês | MEDLINE | ID: mdl-37078722

RESUMO

OBJECTIVES: To assess the incidence, risk factors, and outcomes of atrial fibrillation (AF) in the ICU and to describe current practice in the management of AF. DESIGN: Multicenter, prospective, inception cohort study. SETTING: Forty-four ICUs in 12 countries in four geographical regions. SUBJECTS: Adult, acutely admitted ICU patients without a history of persistent/permanent AF or recent cardiac surgery were enrolled; inception periods were from October 2020 to June 2021. INTERVENTIONS: None. MEASUREMENTS AND MAIN RESULTS: We included 1,423 ICU patients and analyzed 1,415 (99.4%), among whom 221 patients had 539 episodes of AF. Most (59%) episodes were diagnosed with continuous electrocardiogram monitoring. The incidence of AF was 15.6% (95% CI, 13.8-17.6), of which newly developed AF was 13.3% (11.5-15.1). A history of arterial hypertension, paroxysmal AF, sepsis, or high disease severity at ICU admission was associated with AF. Used interventions to manage AF were fluid bolus 19% (95% CI 16-23), magnesium 16% (13-20), potassium 15% (12-19), amiodarone 51% (47-55), beta-1 selective blockers 34% (30-38), calcium channel blockers 4% (2-6), digoxin 16% (12-19), and direct current cardioversion in 4% (2-6). Patients with AF had more ischemic, thromboembolic (13.6% vs 7.9%), and severe bleeding events (5.9% vs 2.1%), and higher mortality (41.2% vs 25.2%) than those without AF. The adjusted cause-specific hazard ratio for 90-day mortality by AF was 1.38 (95% CI, 0.95-1.99). CONCLUSIONS: In ICU patients, AF occurred in one of six and was associated with different conditions. AF was associated with worse outcomes while not statistically significantly associated with 90-day mortality in the adjusted analyses. We observed variations in the diagnostic and management strategies for AF.


Assuntos
Fibrilação Atrial , Adulto , Humanos , Fibrilação Atrial/epidemiologia , Estudos de Coortes , Estudos Prospectivos , Incidência , Fatores de Risco , Unidades de Terapia Intensiva
4.
J Bioenerg Biomembr ; 55(2): 103-114, 2023 04.
Artigo em Inglês | MEDLINE | ID: mdl-37046136

RESUMO

Endothelial dysfunction is a key early link in the pathogenesis of atherosclerosis, and the accumulation of senescent vascular endothelial cells causes endothelial dysfunction. Phosphoenolpyruvate (PEP), which is a high-energy glycolytic intermediate, protects against ischemia-reperfusion injury in isolated rat lung, heart, and liver tissue by quickly providing ATP. However, it was reported that serum PEP concentrations are 13-fold higher in healthy elderly compare to the young. Unlike that of other cell types, the energy required for the physiological function of endothelial cells is mainly derived from glycolysis. Recently, it is unclear whether circulating accumulation of PEP affects endothelial cell function. In this study, we found for the first time that 50-250 µM of PEP significantly promoted THP-1 monocyte adhesion to human umbilical vein endothelial cells (HUVECs) through increased expression of vascular endothelial adhesion factor 1 (VCAM1) and intercellular adhesion factor 1 (ICAM1) in HUVECs. Meanwhile, 50-250 µM of PEP decreased the expression of endothelial nitric oxide synthase (eNOS) and cellular level of nitric oxide (NO) in HUVECs. Moreover, PEP increased levels of ROS, enhanced the numbers of SA-ß-Gal-positive cells and upregulated the expression of cell cycle inhibitors such as p21, p16 and the phosphorylation level of p53 on Ser15, and the expression of proinflammatory factors including TNF-α, IL-1ß, IL-6, IL-8, IL-18 and MCP-1 in HUVECs. Furthermore, PEP increased both oxygen consumption rate (OCR) and glycolysis rate, and was accompanied by reduced NAD+/NADH ratios and enhanced phosphorylation levels of AMPKα (Thr172), p38 MAPK (T180/Y182) and NF-κB p65 (Ser536) in HUVECs. Notably, PEP had no significant effect on hepG2 cells. In conclusion, these results demonstrated that PEP induced dysfunction and senescence in vascular endothelial cells through stimulation of metabolic reprogramming.


Assuntos
Senescência Celular , Transdução de Sinais , Ratos , Animais , Humanos , Idoso , Células Cultivadas , Fosfoenolpiruvato/metabolismo , Fosfoenolpiruvato/farmacologia , Células Endoteliais da Veia Umbilical Humana/metabolismo , Células Endoteliais da Veia Umbilical Humana/patologia
5.
Biochem Biophys Res Commun ; 612: 169-175, 2022 07 05.
Artigo em Inglês | MEDLINE | ID: mdl-35533489

RESUMO

Hepatic lipid accumulation is an initiation factor in fatty liver disease, and promoting a reduction in hepatic lipid accumulation is an important treatment strategy. DEAD box RNA helicase 17 (DDX17) is a member of the DEAD-box family and a molecular chaperone. Previous studies have demonstrated that DDX17 is a transcriptional coregulator of tumorigenesis, inflammation, and macrophage cholesterol efflux. The liver is the main site for lipid metabolism, and metabolic (dysfunction)-associated fatty liver disease (MAFLD) is one of the most common chronic liver diseases. However, the impact of DDX17 on hepatic lipid accumulation has not been verified. In this study, we found, for the first time, that oleic acid/palmitic acid (OA/PA)-induced lipid accumulation was largely abrogated by DDX17 overexpression in both HepG2 (a human hepatocellular carcinoma line) and Hep1-6 (a murine hepatocellular carcinoma line) cells, and this effect was due to a marked reduction in cellular triglyceride (TG) content. Moreover, the overexpression of DDX17 was accompanied by a significant decrease in the expression of genes involved in de novo fatty acid synthesis (FAS, ACC, and SCD-1) in both HepG2 and Hep1-6 cells. In conclusion, DDX17 protected against OA/PA-induced lipid accumulation in hepatocytes through de novo lipogenesis inhibition.


Assuntos
Carcinoma Hepatocelular , Neoplasias Hepáticas , Hepatopatia Gordurosa não Alcoólica , Animais , Carcinoma Hepatocelular/metabolismo , RNA Helicases DEAD-box/genética , RNA Helicases DEAD-box/metabolismo , Células Hep G2 , Hepatócitos/metabolismo , Humanos , Metabolismo dos Lipídeos , Lipogênese , Fígado/metabolismo , Neoplasias Hepáticas/genética , Neoplasias Hepáticas/metabolismo , Camundongos , Hepatopatia Gordurosa não Alcoólica/metabolismo , Ácido Oleico/metabolismo , Ácido Oleico/farmacologia , Ácido Palmítico/metabolismo , Ácido Palmítico/farmacologia
6.
J Biol Chem ; 295(13): 4093-4100, 2020 03 27.
Artigo em Inglês | MEDLINE | ID: mdl-32041777

RESUMO

Renpenning syndrome belongs to a group of X-linked intellectual disability disorders. The Renpenning syndrome-associated protein PQBP1 (polyglutamine-binding protein 1) is intrinsically disordered, associates with several splicing factors, and is involved in pre-mRNA splicing. PQBP1 uses its C-terminal YxxPxxVL motif for binding to the splicing factor TXNL4A (thioredoxin like 4A), but the biological function of this interaction has yet to be elucidated. In this study, using recombinant protein expression, in vitro binding assays, and immunofluorescence microscopy in HeLa cells, we found that a recently reported X-linked intellectual disability-associated missense mutation, resulting in the PQBP1-P244L variant, disrupts the interaction with TXNL4A. We further show that this interaction is critical for the subcellular location of TXNL4A. In combination with other PQBP1 variants lacking a functional nuclear localization signal required for recognition by the nuclear import receptor karyopherin ß2, we demonstrate that PQBP1 facilitates the nuclear import of TXNL4A via a piggyback mechanism. These findings expand our understanding of the molecular basis of the PQBP1-TXNL4A interaction and of the etiology and pathogenesis of Renpenning syndrome and related disorders.


Assuntos
Paralisia Cerebral/genética , Proteínas de Ligação a DNA/genética , Deficiência Intelectual Ligada ao Cromossomo X/genética , Ribonucleoproteína Nuclear Pequena U5/genética , beta Carioferinas/genética , Transporte Ativo do Núcleo Celular/genética , Paralisia Cerebral/patologia , Regulação da Expressão Gênica/genética , Células HeLa , Humanos , Deficiência Intelectual/genética , Deficiência Intelectual/patologia , Deficiência Intelectual Ligada ao Cromossomo X/patologia , Mutação de Sentido Incorreto/genética , Ligação Proteica/genética , Precursores de RNA/genética , Splicing de RNA/genética , Fatores de Processamento de RNA/genética , Transdução de Sinais/genética
7.
Biochem Biophys Res Commun ; 523(1): 140-146, 2020 02 26.
Artigo em Inglês | MEDLINE | ID: mdl-31837803

RESUMO

Doxorubicin, as a first line chemotherapeutic agent, its usage is limited owing to cardiotoxicity. Necroptosis is a new form of programmed cell death, and recent investigations indicated that necroptosis is vitally involved in serious cardiac pathological conditions. Dexrazoxane is the only cardiac protective drug approved by FDA for anthracycline. We aimed to explore whether and how dexrazoxane regulates doxorubicin-induced cardiomyocyte necroptosis. First, doxorubicin could cause heart failure and reduce cardiomyocyte viability by promoting cell apoptosis and necroptosis in vivo and in vitro. Second, necroptosis plays an important role in doxorubicin induced cardiomyocyte injury, which could be inhibited by Nec-1. Third, dexrazoxane increased cell viability and protect heart function by decreasing both cardiomyocyte apoptosis and necroptosis after doxorubicin treatment. Forth, dexrazoxane attenuated doxorubicin-induced inflammation and necroptosis by the inhibition of p38MAPK/NF-κB pathways. These results indicated that dexrazoxane ameliorates cardiotoxicity and protects heart function by attenuating both apoptosis and necroptosis in doxorubicin induced cardiomyocyte injury.


Assuntos
Apoptose/efeitos dos fármacos , Dexrazoxano/farmacologia , Doxorrubicina/efeitos adversos , Miócitos Cardíacos/efeitos dos fármacos , Necroptose/efeitos dos fármacos , Animais , Células Cultivadas , Dexrazoxano/administração & dosagem , Relação Dose-Resposta a Droga , Doxorrubicina/administração & dosagem , Injeções Intraperitoneais , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Relação Estrutura-Atividade
8.
Cell Physiol Biochem ; 49(2): 645-652, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-30165350

RESUMO

BACKGROUND/AIMS: Excess energy intake leads to metabolic dysfunction, accompanied by oxidative stress and poly(ADP-ribose) polymerase (PARP) activation. METHODS: To determine the role of PARP activation in the incidence of metabolic dysfunction, PJ34, the PARP inhibitor, was administered to the oleic acid-treated hepatoma cells and high-fat diet-fed mice. The expression of genes was detected by quantitative real-time PCR and western blotting. Lipid droplets in the cells and tissues were stained with Oil Red O. RESULTS: PJ34 treatment aggravated oleic acid-induced lipid accumulation in hepatoma cells and induced SREBP1 expression by modulating the modification of transcription factor specificity protein 1 (Sp1). The high-fat diet-mice exhibited hyperglycemia, insulin resistance and lipid accumulation after 3 months of feeding. Although the serum level of lipid was not altered after PJ34 treatment, the expression level of lipogenic gene was up-regulated and the lipid accumulation was increased in the liver tissues of high-fat diet + PJ34-treated mice. In the high-fat diet + PJ34-treated mice, the insulin sensitivity was slightly changed and the levels of blood glucose and serum insulin were decreased compared with the mice fed with a high-fat diet alone. CONCLUSION: Taken together, PARP inhibition up-regulated the expression level of lipogenic gene and significantly induced lipid accumulation in the liver, which might worsen lipid metabolism disorders. These data will guide future research into the application of PARP inhibitors in the management of metabolic diseases.


Assuntos
Inibidores de Poli(ADP-Ribose) Polimerases/farmacologia , Poli(ADP-Ribose) Polimerases/metabolismo , Proteína de Ligação a Elemento Regulador de Esterol 1/metabolismo , Regulação para Cima/efeitos dos fármacos , Animais , Glicemia/análise , Peso Corporal/efeitos dos fármacos , Linhagem Celular Tumoral , Dieta Hiperlipídica , Glucose/metabolismo , Insulina/sangue , Lipídeos/sangue , Fígado/metabolismo , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Ácido Oleico/farmacologia , Fenantrenos/farmacologia , Poli(ADP-Ribose) Polimerases/química , Regiões Promotoras Genéticas , Fator de Transcrição Sp1/metabolismo , Proteína de Ligação a Elemento Regulador de Esterol 1/genética
9.
J Biol Chem ; 291(20): 10625-34, 2016 May 13.
Artigo em Inglês | MEDLINE | ID: mdl-27013659

RESUMO

In a microarray study, we found that hepatic miR-291b-3p was significantly increased in leptin-receptor-deficient type 2 mice (db/db), a mouse model of diabetes. The function of miR-291b-3p is unknown. The potential role of miR-291b-3p in regulating hepatic lipid metabolism was explored in this study. High-fat diet (HFD)- and chow-fed mice were injected with an adenovirus expressing a miR-291b-3p inhibitor and a miR-291b-3p mimic through the tail vein. Hepatic lipids and lipogenic gene expression were analyzed. Additionally, gain- and loss-of-function studies were performed in vitro to identify direct targets of miR-291b-3p. MiR-291b-3p expression and the protein levels of sterol regulatory element-binding protein 1 (SREBP1) and fatty acid synthase (FAS) were increased in the steatotic liver of db/db mice and HFD-fed mice versus their respective controls. Inhibition of hepatic miR-291b-3p expression prevented increases in hepatic lipogenesis and steatosis in HFD-fed mice. The opposite was observed when miR-291b-3p was overexpressed in the livers of chow-fed C57BL/6J wild-type mice. In vitro studies revealed that silencing of miR-291b-3p in NCTC1469 hepatic cells ameliorated oleic acid/palmitic acid mixture-induced elevation of cellular triglycerides. Importantly, we identified AMP-activated protein kinase (AMPK)-α1 as a direct target of miR-291b-3p. Using metformin, an activator of AMPK, we showed that AMPK activation-induced inhibition of hepatic lipid accumulation was accompanied by reduced expression of miR-291b-3p in the liver. Liver miR-291b-3p promoted hepatic lipogenesis and lipid accumulation in mice. AMPKα1 is a direct target of miR-291b-3p. In conclusion, our findings indicate that miR-291b-3p promotes hepatic lipogenesis by suppressing AMPKα1 expression and activity, indicating the therapeutic potential of miR-291b-3p inhibitors in fatty liver disease.


Assuntos
Proteínas Quinases Ativadas por AMP/biossíntese , Gorduras na Dieta/efeitos adversos , Fígado Gorduroso/metabolismo , Lipogênese/efeitos dos fármacos , Fígado/metabolismo , MicroRNAs/biossíntese , Proteínas Quinases Ativadas por AMP/genética , Animais , Diabetes Mellitus Experimental/genética , Diabetes Mellitus Experimental/metabolismo , Diabetes Mellitus Experimental/patologia , Gorduras na Dieta/farmacologia , Ativação Enzimática/efeitos dos fármacos , Ativação Enzimática/genética , Ácido Graxo Sintase Tipo I/genética , Ácido Graxo Sintase Tipo I/metabolismo , Fígado Gorduroso/induzido quimicamente , Fígado Gorduroso/genética , Fígado Gorduroso/patologia , Lipogênese/genética , Fígado/patologia , Metformina/farmacologia , Camundongos , MicroRNAs/genética , Proteína de Ligação a Elemento Regulador de Esterol 1/genética , Proteína de Ligação a Elemento Regulador de Esterol 1/metabolismo
10.
Cell Physiol Biochem ; 41(6): 2419-2431, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-28467989

RESUMO

OBJECTIVE: Insulin resistance is a critical factor contributing to the pathogenesis of type 2 diabetes and other metabolic diseases. Recent studies have indicated that miR-338-3p plays an important role in cancer. Here, we investigated whether miR-338-3p mediates tumour necrosis factor-α (TNF-α)-induced hepatic insulin resistance. METHODS: The activation of the insulin signalling pathway and the level of glycogenesis were examined in the livers of the db/db and high fat diet (HFD)-fed mice and in HEP1-6 cells transfected with miR-338-3p mimic or inhibitor. Computational prediction of microRNA target, luciferase assay and Western blot were used to assess the miR-338-3p target. Chromatin immunoprecipitation (ChIP) assay was used to determine the transcriptional regulator of miR-338-3p. RESULTS: miR-338-3p was down-regulated in the livers of the db/db, HFD-fed and TNF-α-treated C57BL/6J mice, as well as in mouse HEP1-6 hepatocytes treated with TNF-α. Importantly the down-regulation of miR-338-3p induced insulin resistance, as indicated by impaired glucose tolerance and insulin tolerance. Further research showed that the down-regulated miR-338-3p resulted in the impaired AKT/ glycogen synthase kinase 3 beta (GSl·Gß) signalling pathway and glycogen synthesis. In contrast, hepatic over-expression of miR-338-3p rescued the TNF-α-induced insulin resistance. Moreover, protein phosphatase 4 regulator subunit 1 (PP4R1) was identified as a direct target of miR-338-3p that mediated hepatic insulin signalling by regulating protein phosphatase 4 (PP4). Finally we identified hepatic nuclear factor 4 alpha (HNF-4α) as the transcriptional regulator of miRNA-338-3p. CONCLUSIONS: Our studies provide novel insight into the critical role and molecular mechanism by which miR-338-3p is involved in TNF-α-induced hepatic insulin resistance. miR-338-3p might mediate TNF-α-induced hepatic insulin resistance by targeting PP4R1 to regulate PP4 expression.


Assuntos
Regulação da Expressão Gênica , Resistência à Insulina , Fígado/efeitos dos fármacos , MicroRNAs/metabolismo , Fosfoproteínas Fosfatases/genética , Fator de Necrose Tumoral alfa/farmacologia , Animais , Sequência de Bases , Linhagem Celular , Dieta Hiperlipídica , Glicogênio Sintase Quinase 3 beta/metabolismo , Fator 4 Nuclear de Hepatócito/antagonistas & inibidores , Fator 4 Nuclear de Hepatócito/genética , Fator 4 Nuclear de Hepatócito/metabolismo , Insulina/farmacologia , Fígado/metabolismo , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Obesos , MicroRNAs/antagonistas & inibidores , MicroRNAs/genética , Fosfoproteínas Fosfatases/química , Fosfoproteínas Fosfatases/metabolismo , Proteínas Proto-Oncogênicas c-akt/metabolismo , Interferência de RNA , Transdução de Sinais
11.
J Cell Mol Med ; 20(8): 1467-80, 2016 08.
Artigo em Inglês | MEDLINE | ID: mdl-27019188

RESUMO

Recently, it is implicated that aberrant expression of microRNAs (miRs) is associated with insulin resistance. However, the role of miR-17 family in hepatic insulin resistance and its underlying mechanisms remain unknown. In this study, we provided mechanistic insight into the effects of miR-20a-5p, a member of miR-17 family, on the regulation of AKT/GSK pathway and glycogenesis in hepatocytes. MiR-20a-5p was down-regulated in the liver of db/db mice, and NCTC1469 cells and Hep1-6 cells treated with high glucose, accompanied by reduced glycogen content and impaired insulin signalling. Notably, inhibition of miR-20a-5p significantly reduced glycogen synthesis and AKT/GSK activation, whereas overexpression of miR-20a-5p led to elevated glycogenesis and activated AKT/GSK signalling pathway. In addition, miR-20a-5p mimic could reverse high glucose-induced impaired glycogenesis and AKT/GSK activation in NCTC1469 and Hep1-6 cells. P63 was identified as a target of miR-20a-5p by bioinformatics analysis and luciferase reporter assay. Knockdown of p63 in the NCTC1469 cells and the Hep1-6 cells by transfecting with siRNA targeting p63 could increase glycogen content and reverse miR-20a-5p inhibition-induced reduced glycogenesis and activation of AKT and GSK, suggesting that p63 participated in miR-20a-5p-mediated glycogenesis in hepatocytes. Moreover, our results indicate that p63 might directly bind to p53, thereby regulating PTEN expression and in turn participating in glycogenesis. In conclusion, we found novel evidence suggesting that as a member of miR-17 family, miR-20a-5p contributes to hepatic glycogen synthesis through targeting p63 to regulate p53 and PTEN expression.


Assuntos
Glicogênio Hepático/biossíntese , MicroRNAs/metabolismo , PTEN Fosfo-Hidrolase/metabolismo , Fosfoproteínas/metabolismo , Transativadores/metabolismo , Proteína Supressora de Tumor p53/metabolismo , Adulto , Animais , Sequência de Bases , Estudos de Casos e Controles , Linhagem Celular , Regulação para Baixo , Feminino , Técnicas de Silenciamento de Genes , Hepatócitos/metabolismo , Humanos , Masculino , Camundongos , MicroRNAs/genética , Modelos Biológicos , Hepatopatia Gordurosa não Alcoólica/genética , Hepatopatia Gordurosa não Alcoólica/patologia , Ligação Proteica
12.
Cell Physiol Biochem ; 35(4): 1413-24, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-25790935

RESUMO

BACKGROUND/AIMS: IL-6 has been implicated in the pathogenesis of insulin resistance. MiR-301a plays an important role in various biological and pathological processes, including cellular development and differentiation, inflammation, apoptosis and cancer. However, whether miR-301a mediates IL-6-induced insulin resistance in hepatocytes remains unknown. METHODS: The activation of AKT/GSK pathway and the level of glycogenesis were examed in NCTC 1469 cells transfected miR-301a mimics and inhibitor. Using computational miRNA target prediction database, PTEN was a target of miR-301a. The effect of miR-301a on PTEN expression was evaluated using Luciferase assay and western blot. A PTEN-specific siRNA was used to further determine the effect of PTEN on IL-6-induced insulin resistance. RESULTS: In vivo and in vitro treatment with IL-6 was led to down-regulation of miR-301a, accompanied by impairment of theAKT/GSK pathway and glycogenesis. Importantly, over-expression of miR-301a rescued IL-6-induced decreased activation of the AKT/GSK pathway and hepatic glycogenesis. In contrast, down-regulation of miR-301a induced impaired phosphorylation of AKT and GSK, accompanied by reduced glycogenesis in hepatocytes. Moreover, our results indicate that suppression of PTEN, a target of miR-301a, diminished the effect of IL-6 on the AKT/GSK pathway and hepatic glycogenesis. CONCLUSION: We present novel evidence of the contribution of miR-301a to IL-6-induced insulin resistance by direct regulation of PTEN expression.


Assuntos
Glicogenólise/efeitos dos fármacos , Interleucina-6/farmacologia , MicroRNAs/metabolismo , PTEN Fosfo-Hidrolase/metabolismo , Transdução de Sinais/efeitos dos fármacos , Animais , Sequência de Bases , Linhagem Celular , Regulação para Baixo/efeitos dos fármacos , Glicogênio/análise , Glicogênio/metabolismo , Quinases da Glicogênio Sintase/metabolismo , Hepatócitos/citologia , Hepatócitos/efeitos dos fármacos , Hepatócitos/metabolismo , Fígado/metabolismo , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Obesos , MicroRNAs/antagonistas & inibidores , MicroRNAs/genética , Oligonucleotídeos Antissenso/metabolismo , PTEN Fosfo-Hidrolase/química , PTEN Fosfo-Hidrolase/genética , Proteínas Proto-Oncogênicas c-akt/metabolismo , Alinhamento de Sequência
13.
J Biol Chem ; 288(31): 22596-606, 2013 Aug 02.
Artigo em Inglês | MEDLINE | ID: mdl-23798681

RESUMO

By influencing the activity of the PI3K/AKT pathway, IL-6 acts as an important regulator of hepatic insulin resistance. miR-200s have been shown to control growth by regulating PI3K, but the role of miR-200s in the development of hepatic insulin resistance remains unclear. The present study showed that elevated serum concentration of IL-6 is associated with decreased levels of miR-200s, impaired activation of the AKT/glycogen synthase kinase (GSK) pathway, and reduced glycogenesis that occurred in the livers of db/db mice. As shown in the murine NCTC 1469 hepatocytes and the primary hepatocytes treated with 10 ng/ml IL-6 for 24 h and in 12-week-old male C57BL/6J mice injected with 16 µg/ml IL-6 by pumps for 7 days, IL-6 administration induced insulin resistance through down-regulation of miR-200s. Moreover, IL-6 treatment inhibited the phosphorylation of AKT and GSK and decreased the glycogenesis. The effects of IL-6 could be diminished by suppression of FOG2 expression. We concluded that IL-6 treatment may impair the activities of the PI3K/AKT/GSK pathway and inhibit the synthesis of glycogen, perhaps via down-regulating miR-200s while augmenting FOG2 expression.


Assuntos
Hepatócitos/metabolismo , Resistência à Insulina , Interleucina-6/fisiologia , MicroRNAs/fisiologia , Animais , Sequência de Bases , Primers do DNA , Masculino , Camundongos , Reação em Cadeia da Polimerase
14.
Cell Physiol Biochem ; 33(3): 810-22, 2014.
Artigo em Inglês | MEDLINE | ID: mdl-24685524

RESUMO

BACKGROUND: There is increasing evidence that miRNAs are involved in cellular apoptosis. However, the specific role of miR-291b-3p in apoptosis has not been elucidated. In the present study, we investigated the effect of miR-291b-3p on NCTC1469 cell growth and apoptosis. METHODS: Cell viability and apoptosis were examined in NCTC1469 cells transfected with miR-291b-3p mimics, inhibitor miRNA or negative control. Using computational miRNA target prediction databases, HuR was predicted as a target of miR-291b-3p. Luciferase assay, immunofluorescence and western blot were used to further explore the effects of miR-291b-3p on HuR expression. In addition, the effect of HuR on cell apoptosis was evaluated using a HuR-specific siRNA. RESULTS: TNF-α-induced hepatocyte apoptosis was accompanied by enhanced expression of miR-291b-3p, suggesting that miR-291b-3p might contribute to the apoptotic process. Follow-up experiments showed that upregulation of miR-291b-3p decreased cell viability and induced NCTC1469 cell apoptosis. Additionally, similar to the activity of miR-519, which is another member of the same miRNA family, miR-291b-3p suppressed HuR translation through binding to the HuR coding region (CR). We further showed that the downregulation of HuR expression by miR-291b-3p was accompanied by reduced Bcl-2 expression. Moreover, knockdown of HuR also impaired Bcl-2 expression and increased the ratio of Bax/Bcl-2. More significantly, downregulation of miR-291b-3p failed to increase Bcl2 expression in NCTC1469 cells that were co-transfected with siRNA-HuR. Finally, inhibition of miR-291b-3p led to reduced apoptosis, while knockdown of HuR by siRNA promoted apoptosis, even in NCTC1469 cells that were co-transfected with the miR-291b-3p inhibitor. CONCLUSION: The current data suggested that miR-291b-3p contributed to NCTC1469 cell apoptosis by regulating the expression of HuR, which in turn increased Bcl-2 stability.


Assuntos
Apoptose/fisiologia , Proteína Semelhante a ELAV 1/biossíntese , Hepatócitos/metabolismo , MicroRNAs/biossíntese , Biossíntese de Proteínas/fisiologia , Regulação para Cima/fisiologia , Animais , Linhagem Celular , Proteína Semelhante a ELAV 1/genética , Hepatócitos/citologia , Masculino , Camundongos , MicroRNAs/genética , Estabilidade Proteica , Proteínas Proto-Oncogênicas c-bcl-2/genética , Proteínas Proto-Oncogênicas c-bcl-2/metabolismo
15.
Ultrastruct Pathol ; 38(3): 211-6, 2014 May.
Artigo em Inglês | MEDLINE | ID: mdl-24625130

RESUMO

To investigate the effects of X-ray irradiation on the proliferation and apoptosis of MCF-7 breast cancer cells; MCF-7 breast cancer cells were irradiated with X-ray. After irradiation, morphological changes and growth inhibition rate of the irradiated cells were observed under an inverted microscope. 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide assay was used to assess the proliferation of the irradiated MCF-7 cells. Transmission electron microscope was used to observe the morphology and ultrastructure of the irradiated MCF-7 cells. Western blotting was used to analyze the expression level of apoptosis-related protein caspase-3. Our results showed, at 48 h after the irradiation (0 Gy and 8 Gy), cells oval in shape, cell shrinkage or swelling and partial formation of debris under inverted microscope; as well as cytoplasmic vacuolization or inspissation, increased electron density of cytoplasm, structural damage of organelles, blurred mitochondrial cristae and chromatin margination under transmission electron microscopy; the survival rate of MCF-7 cells in X-ray group was 17.3% lower than that in control group (0 Gy) (p < 0.001); while caspase-3 expression increased evidently in X-ray group compared with control group (0 Gy) (p < 0.05). In conclusion, X-ray irradiation can inhibit the proliferation of MCF-7 cells and induce apoptosis through increasing caspase-3 expression.


Assuntos
Apoptose/efeitos da radiação , Neoplasias da Mama/ultraestrutura , Proliferação de Células/efeitos da radiação , Raios X , Neoplasias da Mama/metabolismo , Caspase 3/metabolismo , Forma Celular/efeitos da radiação , Sobrevivência Celular/efeitos da radiação , Feminino , Humanos , Células MCF-7 , Microscopia Eletrônica de Transmissão , Fatores de Tempo
16.
World J Clin Cases ; 12(6): 1182-1189, 2024 Feb 26.
Artigo em Inglês | MEDLINE | ID: mdl-38464919

RESUMO

BACKGROUND: Lung cancer (LC) is the leading cause of malignancy-related deaths worldwide. The most common sites of metastasis include the nervous system, bone, liver, respiratory system, and adrenal glands. LC metastasis in the parotid gland is very rare, and its diagnosis presents a challenge. Here, we report a case of parotid metastasis in primary LC. CASE SUMMARY: The patient was a 74-year-old male who was discovered to have bilateral facial asymmetry inadvertently two years ago. The right earlobe was slightly swollen and without pain or numbness. Computed tomography (CT) examination showed bilateral lung space-occupying lesions. Pulmonary biopsy was performed and revealed adenocarcinoma (right-upper-lung nodule tissue). Positron emission tomography-CT examination showed: (1) Two hypermetabolic nodules in the right upper lobe of the lung, enlarged hypermetabolic lymph nodes in the right hilar and mediastinum, and malignant space-occupying lesion in the right upper lobe of the lung and possible metastasis to the right hilar and mediastinal lymph nodes; and (2) multiple hypermetabolic nodules in bilateral parotid glands. Parotid puncture biopsy was performed considering lung adenocarcinoma metastasis. Gene detection of lung biopsy specimens revealed an EGFR gene 21 exon L858R mutation. CONCLUSION: This case report highlights the challenging diagnosis of parotid metastasis in LC given its rare nature. Such lesions should be differentiated from primary tumors of the parotid gland. Simple radiological imaging is unreliable, and puncture biopsy is needed for final diagnosis of this condition.

17.
Signal Transduct Target Ther ; 9(1): 127, 2024 May 24.
Artigo em Inglês | MEDLINE | ID: mdl-38782919

RESUMO

DEAD-box helicase 17 (DDX17) is a typical member of the DEAD-box family with transcriptional cofactor activity. Although DDX17 is abundantly expressed in the myocardium, its role in heart is not fully understood. We generated cardiomyocyte-specific Ddx17-knockout mice (Ddx17-cKO), cardiomyocyte-specific Ddx17 transgenic mice (Ddx17-Tg), and various models of cardiomyocyte injury and heart failure (HF). DDX17 is downregulated in the myocardium of mouse models of heart failure and cardiomyocyte injury. Cardiomyocyte-specific knockout of Ddx17 promotes autophagic flux blockage and cardiomyocyte apoptosis, leading to progressive cardiac dysfunction, maladaptive remodeling and progression to heart failure. Restoration of DDX17 expression in cardiomyocytes protects cardiac function under pathological conditions. Further studies showed that DDX17 can bind to the transcriptional repressor B-cell lymphoma 6 (BCL6) and inhibit the expression of dynamin-related protein 1 (DRP1). When DDX17 expression is reduced, transcriptional repression of BCL6 is attenuated, leading to increased DRP1 expression and mitochondrial fission, which in turn leads to impaired mitochondrial homeostasis and heart failure. We also investigated the correlation of DDX17 expression with cardiac function and DRP1 expression in myocardial biopsy samples from patients with heart failure. These findings suggest that DDX17 protects cardiac function by promoting mitochondrial homeostasis through the BCL6-DRP1 pathway in heart failure.


Assuntos
RNA Helicases DEAD-box , Insuficiência Cardíaca , Miócitos Cardíacos , Animais , Humanos , Camundongos , Apoptose/genética , RNA Helicases DEAD-box/genética , RNA Helicases DEAD-box/metabolismo , Dinaminas/genética , Dinaminas/metabolismo , Insuficiência Cardíaca/genética , Insuficiência Cardíaca/patologia , Insuficiência Cardíaca/metabolismo , Homeostase/genética , Camundongos Knockout , Camundongos Transgênicos , Mitocôndrias/genética , Mitocôndrias/metabolismo , Mitocôndrias/patologia , Dinâmica Mitocondrial/genética , Miócitos Cardíacos/metabolismo , Miócitos Cardíacos/patologia , Proteínas Proto-Oncogênicas c-bcl-6/genética , Proteínas Proto-Oncogênicas c-bcl-6/metabolismo
18.
Front Endocrinol (Lausanne) ; 14: 1176430, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37223047

RESUMO

Background: Research on exosomes in metabolic diseases has been gaining attention, but a comprehensive and objective report on the current state of research is lacking. This study aimed to conduct a bibliometric analysis of publications on "exosomes in metabolic diseases" to analyze the current status and trends of research using visualization methods. Methods: The web of science core collection was searched for publications on exosomes in metabolic diseases from 2007 to 2022. Three software packages, VOSviewer, CiteSpace, and R package "bibliometrix" were used for the bibliometric analysis. Results: A total of 532 papers were analyzed, authored by 29,705 researchers from 46 countries/regions and 923 institutions, published in 310 academic journals. The number of publications related to exosomes in metabolic diseases is gradually increasing. China and the United States were the most productive countries, while Ciber Centro de Investigacion Biomedica en Red was the most active institution. The International Journal of Molecular Sciences published the most relevant studies, and Plos One received the most citations. Khalyfa, Abdelnaby published the most papers and Thery, C was the most cited. The ten most co-cited references were considered as the knowledge base. After analysis, the most common keywords were microRNAs, biomarkers, insulin resistance, expression, and obesity. Applying basic research related on exosomes in metabolic diseases to clinical diagnosis and treatment is a research hotspot and trend. Conclusion: This study provides a comprehensive summary of research trends and developments in exosomes in metabolic diseases through bibliometrics. The information points out the research frontiers and hot directions in recent years and will provide a reference for researchers in this field.


Assuntos
Exossomos , Resistência à Insulina , Doenças Metabólicas , Humanos , Doenças Metabólicas/epidemiologia , Bibliometria , China
19.
Environ Technol ; : 1-9, 2023 Dec 15.
Artigo em Inglês | MEDLINE | ID: mdl-38100572

RESUMO

In this study, a one-step solvothermal method was used to fabricate Fe3+ doped BiOCl microflowers with abundant oxygen vacancies (OVs) in the presence of glacial acetic acid. Various analytical techniques were employed to characterize the structural, morphological, and optical properties of the prepared samples. The presence of OVs was confirmed by low temperature electron paramagnetic resonance (EPR) analysis. The photocatalytic results show that Fe3+ doped BiOCl photocatalysts have higher activity than the bare BiOCl, and 10% Fe3+/BiOCl exhibits the highest photocatalytic performance, the photocatalytic efficiency of this sample is 2.3 and 1.1 times higher than that of the blank BiOCl toward photocatalytic degradation of perfluorooctanoic acid (PFOA) and rhodamine B (RhB), respectively. Furthermore, Fe3+ doped BiOCl demonstrates excellent reusability. Based on the experimental observations, an enhancement mechanism for the photocatalytic activity of Fe3+ doped BiOCl was reasonably elucidated.

20.
J Colloid Interface Sci ; 634: 874-886, 2023 Mar 15.
Artigo em Inglês | MEDLINE | ID: mdl-36566633

RESUMO

In this study, monoclinic phase bismuth vanadate (BiOV4) photocatalyst with unique hollow microsphere morphology was successfully prepared by a hydrothermal method in the existence of sodium dodecyl benzene sulfonate (SDBS). The prepared photocatalysts were characterized by X-ray diffraction (XRD), scanning electron (SEM) and X-ray photoelectron spectrometer (XPS) and UV-vis diffuse reflectance spectroscopy (UV-vis DRS). Experimental results show that SDBS definitely changes the microstructure of BiVO4, which is allocated to the template role of SDBS in the preparation process. Moreover, the hydrothermal treatment time is also of crucial importance in affecting the structure and morphology of the photocatalysts, and the optimal hydrothermal treatment time for the formation of hollow microsphere is 24 h. Furthermore, the feasible growth mechanism for hollow microsphere was elaborated. Enriched oxygen vacancies (OVs) are introduced into BiOV4 prepared with SDBS, largely elevating the separation efficiency of photo-generated charges. Under visible light irradiation, the photocatalytic activities of BiOV4 for destruction of rhodamine (RhB) were evaluated. The photocatalytic degradation rate constant of RhB on the 3SBVO is 2.23 times of that on the blank BiOV4 as the mass ratio of SDBS/BiOV4 is 3 %. Photocatalytic degradation mechanism of BiVO4 toward detoxification of organic pollutants was presented.

SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa