RESUMO
In this study, the oxygen-tolerant mutant strain Clostridium sp. Aeroto-AUH-JLC108 was found to produce indole when grown aerobically. The tnaA gene coding for tryptophanase responsible for the production of indole was cloned. The tnaA gene from Aeroto-AUH-JLC108 is 1677 bp and has one point mutation (C36G) compared to the original anaerobic strain AUH-JLC108. Phylogenetic analyses based on the amino acid sequence showed significant homology to that of TnaA from Flavonifractor. Furthermore, we found that the tnaA gene also exhibited cysteine desulfhydrase activity. The production of hydrogen sulfide (H2S) was accompanied by decrease in the amount of the dissolved oxygen in the culture medium. Similarly, the amount of indole produced by strain Aeroto-AUH-JLC108 obviously decreased the oxidation-reduction potential (ORP) in BHI liquid medium. The results demonstrated that production of indole and H2S helped to form a hypoxic microenvironment for strain Aeroto-AUH-JLC108 when grown aerobically.
Assuntos
Clostridium , Sulfeto de Hidrogênio , Indóis , Triptofanase , Clostridium/genética , Clostridium/metabolismo , Sulfeto de Hidrogênio/metabolismo , Hipóxia/metabolismo , Indóis/metabolismo , Oxigênio/metabolismo , Filogenia , Triptofanase/genética , Triptofanase/metabolismoRESUMO
BACKGROUND: The soy isoflavone microbial metabolites dihydrodaidzein (DHD), dihydrogenistein (DHG), equol and 5-hydroxy-equol are generally more biologically active than their precursors daidzein and genistein. Bacteria responsible for isoflavone metabolism have been isolated and identified. Fermented soymilk is a potential functional food; however, there are few lactic acid bacteria capable of metabolizing soy isoflavones. RESULTS: A newly isolated Gram-positive facultative anaerobic bacterium, which was named Lactobacillus acidipiscis HAU-FR7, was isolated from the traditional Chinese fermented soy product 'stinky tofu'. Bacterium strain HAU-FR7 can grow under aerobic conditions and can also convert most of the daidzin and genistin in soymilk into DHD and DHG, respectively. The concentrations of DHD and DHG produced were 183 and 134 µmol L-1 , respectively, after fermentation for 24 h. Strain HAU-FR7 does not produce the biogenic amines cadaverine, putrescine, histamine or tyramine, and an antibiotic susceptibility test showed that HAU-FR7 is sensitive to nine of the ten tested antibiotics, except for vancomycin. Moreover, the 1,1-diphenyl-2- picrylhydrazyl free radical scavenging capacity of soymilk fermented with HAU-FR7 was significantly higher than that of unfermented soymilk. CONCLUSION: A facultative anaerobic lactic acid bacterium, designated Lactobacillus acidipiscis HAU-FR7, is capable of reducing the soy isoflavone glucosides daidzin and genistin in soymilk to DHD and DHG efficiently, even in the presence of atmospheric oxygen. The biotransformation activity of HAU-FR7 grown in soymilk is higher than that in de Man-Rogosa-Sharpe liquid culture medium. © 2022 Society of Chemical Industry.