Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 12 de 12
Filtrar
Mais filtros

Base de dados
País como assunto
Tipo de documento
Intervalo de ano de publicação
1.
Plant Cell Rep ; 43(2): 31, 2024 Jan 10.
Artigo em Inglês | MEDLINE | ID: mdl-38195905

RESUMO

KEY MESSAGE: OsMKK1, a MAPK gene, positively regulates rice Xa21-mediated resistance response and also plays roles in normal growth and development process of rice. The mitogen-activated protein kinase (MAPK) cascade was highly conserved among eukaryotes, which played crucial roles in plant responses to pathogen infection. Bacterial blight is the most devastating bacterial disease. Xa21 confers broad-spectrum resistance to Xanthomonas oryzae pv. Oryzae (Xoo). This study identified that the transcription level of OsMKK1 was up-regulated in resistant response against Xoo, thus overexpression (OsMKK1-OX) and RNA interference (OsMKK1-RNAi) transgenic rice lines under the background of Xa21 was constructed. Compared with recipient control plants 4021, the OsMKK1-OX lines significantly enhanced disease resistance to Xoo, on the contrary, the resistance of OsMKK1-RNAi lines was weakened, demonstrated that OsMKK1 played a positive role in Xa21-mediated disease resistance pathway. A number of pathogenesis-related proteins, including PR1A, PR2 and PR10A showed enhanced expression in OsMKK1-OX lines, supported that these PR genes may be regulated by OsMKK1 to participate in the defense responses. In addition, the agronomic traits of OsMKK1 transgenic plants were affected. Overall, these results revealed the role of OsMKK1 in Xa21-mediated resistance against Xoo and in the normal growth and development process in rice.


Assuntos
Oryza , Oryza/genética , Resistência à Doença/genética , Agricultura , Fenótipo
2.
Arch Microbiol ; 204(8): 486, 2022 Jul 14.
Artigo em Inglês | MEDLINE | ID: mdl-35834134

RESUMO

In this study, the oxygen-tolerant mutant strain Clostridium sp. Aeroto-AUH-JLC108 was found to produce indole when grown aerobically. The tnaA gene coding for tryptophanase responsible for the production of indole was cloned. The tnaA gene from Aeroto-AUH-JLC108 is 1677 bp and has one point mutation (C36G) compared to the original anaerobic strain AUH-JLC108. Phylogenetic analyses based on the amino acid sequence showed significant homology to that of TnaA from Flavonifractor. Furthermore, we found that the tnaA gene also exhibited cysteine desulfhydrase activity. The production of hydrogen sulfide (H2S) was accompanied by decrease in the amount of the dissolved oxygen in the culture medium. Similarly, the amount of indole produced by strain Aeroto-AUH-JLC108 obviously decreased the oxidation-reduction potential (ORP) in BHI liquid medium. The results demonstrated that production of indole and H2S helped to form a hypoxic microenvironment for strain Aeroto-AUH-JLC108 when grown aerobically.


Assuntos
Clostridium , Sulfeto de Hidrogênio , Indóis , Triptofanase , Clostridium/genética , Clostridium/metabolismo , Sulfeto de Hidrogênio/metabolismo , Hipóxia/metabolismo , Indóis/metabolismo , Oxigênio/metabolismo , Filogenia , Triptofanase/genética , Triptofanase/metabolismo
3.
J Sci Food Agric ; 102(15): 7221-7230, 2022 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-35730767

RESUMO

BACKGROUND: The soy isoflavone microbial metabolites dihydrodaidzein (DHD), dihydrogenistein (DHG), equol and 5-hydroxy-equol are generally more biologically active than their precursors daidzein and genistein. Bacteria responsible for isoflavone metabolism have been isolated and identified. Fermented soymilk is a potential functional food; however, there are few lactic acid bacteria capable of metabolizing soy isoflavones. RESULTS: A newly isolated Gram-positive facultative anaerobic bacterium, which was named Lactobacillus acidipiscis HAU-FR7, was isolated from the traditional Chinese fermented soy product 'stinky tofu'. Bacterium strain HAU-FR7 can grow under aerobic conditions and can also convert most of the daidzin and genistin in soymilk into DHD and DHG, respectively. The concentrations of DHD and DHG produced were 183 and 134 µmol L-1 , respectively, after fermentation for 24 h. Strain HAU-FR7 does not produce the biogenic amines cadaverine, putrescine, histamine or tyramine, and an antibiotic susceptibility test showed that HAU-FR7 is sensitive to nine of the ten tested antibiotics, except for vancomycin. Moreover, the 1,1-diphenyl-2- picrylhydrazyl free radical scavenging capacity of soymilk fermented with HAU-FR7 was significantly higher than that of unfermented soymilk. CONCLUSION: A facultative anaerobic lactic acid bacterium, designated Lactobacillus acidipiscis HAU-FR7, is capable of reducing the soy isoflavone glucosides daidzin and genistin in soymilk to DHD and DHG efficiently, even in the presence of atmospheric oxygen. The biotransformation activity of HAU-FR7 grown in soymilk is higher than that in de Man-Rogosa-Sharpe liquid culture medium. © 2022 Society of Chemical Industry.


Assuntos
Isoflavonas , Alimentos de Soja , Leite de Soja , Humanos , Fermentação , Glucosídeos/metabolismo , Composição de Bases , Filogenia , RNA Ribossômico 16S , Análise de Sequência de DNA , Leite de Soja/metabolismo , Isoflavonas/metabolismo , Bactérias/metabolismo , China
4.
Plant Physiol ; 183(1): 331-344, 2020 05.
Artigo em Inglês | MEDLINE | ID: mdl-32165446

RESUMO

A wide variety of intrinsic and extrinsic cues lead to cell death with unclear mechanisms. The infertility of some death mutants often hurdles the classical suppressor screens for death regulators. We have developed a transient RNA interference (RNAi)-based screen using a virus-induced gene silencing approach to understand diverse cell death pathways in Arabidopsis (Arabidopsis thaliana). One death pathway is due to the depletion of a MAP kinase (MAPK) cascade, consisting of MAPK kinase kinase 1 (MEKK1), MKK1/2, and MPK4, which depends on a nucleotide-binding site Leu-rich repeat (NLR) protein SUMM2. Silencing of MEKK1 by virus-induced gene silencing resembles the mekk1 mutant with autoimmunity and defense activation. The RNAi-based screen toward Arabidopsis T-DNA insertion lines identified SUMM2, MEKK2, and Calmodulin-binding receptor-like cytoplasmic kinase 3 (CRCK3) to be vital regulators of RNAi MEKK1-induced cell death, consistent with the reports of their requirement in the mekk1-mkk1/2-mpk4 death pathway. Similar with MEKK2, overexpression of CRCK3 caused dosage- and SUMM2-dependent cell death, and the transcripts of CRCK3 were up-regulated in mekk1, mkk1/2, and mpk4 MEKK2-induced cell death depends on CRCK3. Interestingly, CRCK3-induced cell death also depends on MEKK2, consistent with the biochemical data that MEKK2 complexes with CRCK3. Furthermore, the kinase activity of CRCK3 is essential, whereas the kinase activity of MEKK2 is dispensable, for triggering cell death. Our studies suggest that MEKK2 and CRCK3 exert concerted functions in the control of NLR SUMM2 activation and MEKK2 may play a structural role, rather than function as a kinase, in regulating CRCK3 protein stability.


Assuntos
Proteínas de Arabidopsis/metabolismo , Arabidopsis/metabolismo , Arabidopsis/genética , Proteínas de Arabidopsis/genética , Proteínas de Transporte/genética , Proteínas de Transporte/metabolismo , MAP Quinase Quinase Quinase 1/genética , MAP Quinase Quinase Quinase 1/metabolismo , MAP Quinase Quinase Quinase 2/genética , MAP Quinase Quinase Quinase 2/metabolismo , Quinases de Proteína Quinase Ativadas por Mitógeno/genética , Quinases de Proteína Quinase Ativadas por Mitógeno/metabolismo , Proteínas Quinases Ativadas por Mitógeno/genética , Proteínas Quinases Ativadas por Mitógeno/metabolismo , Estabilidade Proteica , Interferência de RNA/fisiologia
5.
Int J Mol Sci ; 18(8)2017 Aug 22.
Artigo em Inglês | MEDLINE | ID: mdl-28829403

RESUMO

Reference proteins and biomarkers are important for the quantitative evaluation of protein abundance. Chlamydomonasreinhardtii was grown under five stress conditions (dark, cold, heat, salt, and glucose supplementation), and the OD750 and total protein contents were evaluated on days 0, 1, 2, 4, and 6 of culture. Antibodies for 20 candidate proteins were generated, and the protein expression patterns were examined by western blotting. Reference protein(s) for each treatment were identified by calculating the Pearson's correlation coefficient (PCC) between target protein abundance and total protein content. Histone H3, beta tubulin 1 (TUB-1), ribulose-1,5-bisphosphate carboxylase/oxygenase large subunit (RBCL), and mitochondrial F1F0 ATP synthase subunit 6 (ATPs-6) were the top reference proteins, because they were expressed stably under multiple stress conditions. The average relative-fold change (ARF) value of each protein was calculated to identify biomarkers. Heat shock protein 90B (HSP90B), flagellar associated protein (FAP127) and ATP synthase CF0 A subunit (ATPs-A) were suitable biomarkers for multiple treatments, while receptor of activated protein kinase C1 (RCK1), biotin carboxylase (BCR1), mitochondrial phosphate carrier protein (MPC1), and rubisco large subunit N-methyltransferase (RMT1) were suitable biomarkers for the dark, cold, heat, and glucose treatments, respectively.


Assuntos
Chlamydomonas reinhardtii/metabolismo , Proteínas de Plantas/metabolismo , Proteoma , Proteômica , Estresse Fisiológico , Biomarcadores , Perfilação da Expressão Gênica , Regulação da Expressão Gênica de Plantas , Proteômica/métodos
6.
BMC Plant Biol ; 15: 49, 2015 Feb 13.
Artigo em Inglês | MEDLINE | ID: mdl-25849162

RESUMO

BACKGROUND: Rice blast disease is one of the most destructive diseases of rice worldwide. We previously cloned the rice blast resistance gene Pid2, which encodes a transmembrane receptor-like kinase containing an extracellular B-lectin domain and an intracellular serine/threonine kinase domain. However, little is known about Pid2-mediated signaling. RESULTS: Here we report the functional characterization of the U-box/ARM repeat protein OsPUB15 as one of the PID2-binding proteins. We found that OsPUB15 physically interacted with the kinase domain of PID2 (PID2K) in vitro and in vivo and the ARM repeat domain of OsPUB15 was essential for the interaction. In vitro biochemical assays indicated that PID2K possessed kinase activity and was able to phosphorylate OsPUB15. We also found that the phosphorylated form of OsPUB15 possessed E3 ligase activity. Expression pattern analyses revealed that OsPUB15 was constitutively expressed and its encoded protein OsPUB15 was localized in cytosol. Transgenic rice plants over-expressing OsPUB15 at early stage displayed cell death lesions spontaneously in association with a constitutive activation of plant basal defense responses, including excessive accumulation of hydrogen peroxide, up-regulated expression of pathogenesis-related genes and enhanced resistance to blast strains. We also observed that, along with plant growth, the cell death lesions kept spreading over the whole seedlings quickly resulting in a seedling lethal phenotype. CONCLUSIONS: These results reveal that the E3 ligase OsPUB15 interacts directly with the receptor-like kinase PID2 and regulates plant cell death and blast disease resistance.


Assuntos
Morte Celular , Regulação da Expressão Gênica de Plantas , Oryza/fisiologia , Proteínas de Plantas/genética , Proteínas Quinases/genética , Ubiquitina-Proteína Ligases/genética , Sequência de Aminoácidos , Resistência à Doença , Imunidade Inata , Magnaporthe/fisiologia , Oryza/enzimologia , Oryza/genética , Oryza/imunologia , Filogenia , Doenças das Plantas/genética , Doenças das Plantas/imunologia , Doenças das Plantas/microbiologia , Imunidade Vegetal/fisiologia , Proteínas de Plantas/química , Proteínas de Plantas/metabolismo , Plantas Geneticamente Modificadas/genética , Plantas Geneticamente Modificadas/imunologia , Plantas Geneticamente Modificadas/fisiologia , Proteínas Quinases/metabolismo , Ubiquitina-Proteína Ligases/química , Ubiquitina-Proteína Ligases/metabolismo
7.
Front Microbiol ; 13: 923242, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36118228

RESUMO

Wheat take-all disease caused by Gaeumannomyces graminis var. tritici (Ggt) spreads rapidly and is highly destructive, causing severe reductions in wheat yield. Bacillus subtilis strain Z-14 that significantly controlled wheat take-all disease effectively colonized the roots of wheat seedlings. Z-14 increased the metabolic activity and carbon source utilization of rhizospheric microorganisms, thus elevating average well-color development (AWCD) values and functional diversity indexes of soil microbial communities. Z-14 increased the abundance of Bacillus in the rhizosphere, which was positively correlated with AWCD and functional diversity indexes. The Z-14-treated samples acquired more linkages and relative connections between bacterial communities according to co-occurrence network analyses. After the application of Ggt, the number of linkages between fungal communities increased but later decreased, whereas Z-14 increased such interactions. Whole-genome sequencing uncovered 113 functional genes related to Z-14's colonization ability and 10 secondary metabolite gene clusters in the strain, of which nine substances have antimicrobial activity. This study clarifies how bacterial agents like Z-14 act against phytopathogenic fungi and lays a foundation for the effective application of biocontrol agents.

8.
Rice (N Y) ; 15(1): 41, 2022 Aug 03.
Artigo em Inglês | MEDLINE | ID: mdl-35920921

RESUMO

Rice bacterial blight, caused by Xanthomonas oryzae pv. oryzae (Xoo), is one of the most serious diseases affecting rice production worldwide. Xa21 was the first disease resistance gene cloned in rice, which encodes a receptor kinase and confers broad resistance against Xoo stains. Dozens of components in the Xa21-mediated pathway have been identified in the past decades, however, the involvement of mitogen-activated protein kinase (MAPK) genes in the pathway has not been well described. To identify MAPK involved in Xa21-mediated resistance, the level of MAPK proteins was profiled using Western blot analysis. The abundance of OsMPK17 (MPK17) was found decreased during the rice-Xoo interaction in the background of Xa21. To investigate the function of MPK17, MPK17-RNAi and over-expression (OX) transgenic lines were generated. The RNAi lines showed an enhanced resistance, while OX lines had impaired resistance against Xoo, indicating that MPK17 plays negative role in Xa21-mediated resistance. Furthermore, the abundance of transcription factor WRKY62 and pathogenesis-related proteins PR1A were changed in the MPK17 transgenic lines when inoculated with Xoo. We also observed that the MPK17-RNAi and -OX rice plants showed altered agronomic traits, indicating that MPK17 also plays roles in the growth and development. On the basis of the current study and published results, we propose a "Xa21-MPK17-WRKY62-PR1A" signaling that functions in the Xa21-mediated disease resistance pathway. The identification of MPK17 advances our understanding of the mechanism underlying Xa21-mediated immunity, specifically in the mid- and late-stages.

9.
Gene ; 423(1): 14-22, 2008 Oct 15.
Artigo em Inglês | MEDLINE | ID: mdl-18674605

RESUMO

Monocarboxylate transporters (MCTs) form a gene family with an ancient past. The identification of MCTs (MCHs) from bacteria, protozoa, fungi, invertebrates, as well as vertebrates, but not from plants and virus, allowed illuminating the phylogenetic and evolutionary history of this gene family. The significant expansion of vertebrate MCT genes should have primarily occurred after the divergence of vertebrates and invertebrates, but before the divergence time between ray-finned fish and mammals. The divergence of insect MCTs should have at least occurred in the common ancestor of fruit fly, beetle, and honeybee. Fungi monocarboxylate transporter homologues (MCHs) might evolve independently from an ancient ancestor. The results of functional divergence analysis provided statistical evidences for shifted evolutionary rate and/or changes of amino acid property after gene duplication. The sliding window analysis of the d(N)/d(S) ratio values showed that strong functional constraints must impose on the N- and C-terminal domains of vertebrate MCTs. These corresponding regions may play crucial roles for functionality of MCT proteins.


Assuntos
Transportadores de Ácidos Monocarboxílicos/genética , Vertebrados/genética , Animais , Evolução Molecular , Duplicação Gênica , Humanos , Transportadores de Ácidos Monocarboxílicos/química , Filogenia , Estrutura Terciária de Proteína , Especificidade da Espécie , Simportadores/química , Simportadores/genética , Vertebrados/classificação , Vertebrados/metabolismo
10.
PLoS One ; 13(7): e0199873, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-29969497

RESUMO

To reveal growth properties of Chlorella sorokiniana UTEX 1230, four monosaccharides (glucose, fructose, galactose and xylose) were individually supplemented into medium as carbon sources for the cultivation of C. sorokiniana UTEX 1230. Supplementation with glucose increased OD750, biomass and lipid yield but decreased protein abundance per unit dry weight of biomass under all concentrations examined, the maximum OD750, biomass and lipid yield increased 2.04, 6.78 and 12.43 times, respectively, compared with autotrophic controls. A low concentration of glucose (<4 g/L) simultaneously promoted the biosynthesis of chlorophylls and protein abundance per unit culture volume, but decreased the lipid content per unit dry weight of biomass and all supplemented glucose can be exhausted within 7 days. Higher glucose concentrations (≥4 g/L) decreased the biosynthesis of chlorophylls and protein abundance per unit culture volume, but increased the lipid content per unit dry weight of biomass. In glucose supplemented scenario, C. sorokiniana UTEX 1230 growth was light-independent. Supplementation with fructose promoted C. sorokiniana UTEX 1230 growth to a much lesser extent compared with glucose, whereas supplementation with galactose had no effect and supplementation with xylose even inhibited growth. Our findings represent basic experimental data on the effect of monosaccharides and can serve as the basis for a robust cultivation system to increase biomass and lipid yield.


Assuntos
Técnicas de Cultura Celular por Lotes/métodos , Carbono/metabolismo , Chlorella/crescimento & desenvolvimento , Glucose/metabolismo , Lipídeos/análise , Monossacarídeos/metabolismo , Nitrogênio/metabolismo , Chlorella/metabolismo , Luz
11.
Biosystems ; 80(2): 123-31, 2005 May.
Artigo em Inglês | MEDLINE | ID: mdl-15823411

RESUMO

The relationship between codon usage and gene function was investigated while considering a dataset of 2106 nuclear genes of Oryza sativa. The results of standard chi(2) test and F-statistic showed that for every 59 synonymous codons, a strongly significant association with gene functional categories existed in rice, indicating that codon usage was generally coordinated with gene function whether it was at the level of individual amino acids or at the level of nucleotides. However, it could not be directly said that the use of every codons differed significantly between any two functional categories. Notably, there existed large difference both in selection for biased codons or selection intensity among functional categories. Therefore, we identified at least two classes of genes: one group of genes, mainly belonging to the "METABOLISM" category, was tended to use G- and/or C-ending codons while the other was more biased to choose codons ending with A and/or U. The latter group contained genes of various functions, especially those genes classified into the "Nuclear Structure" category. These observations will be more important for molecular genetic engineering and genome functional annotation.


Assuntos
Mapeamento Cromossômico/métodos , Códon/genética , Oryza/genética , Oryza/metabolismo , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Análise de Sequência de DNA/métodos , Genoma de Planta , Relação Estrutura-Atividade
12.
PLoS One ; 9(8): e105061, 2014.
Artigo em Inglês | MEDLINE | ID: mdl-25121594

RESUMO

Plant phosphoinositide-specific phospholipases C (PI-PLCs) function in several essential plant processes associated with either development or environmental stress. In this report, we examined the expression patterns of TaPLC1 under drought and high salinity stress at the transcriptional and post-transcriptional levels. TaPLC1 mRNA was expressed in all wheat organs examined. U73122 and edelfosine, the PLC inhibitor, impaired seedling growth and enhanced seedling sensitivity to drought and high salinity stress. Though TaPLC1 expression in wheat was lowest at the seedling stage, it was strongly induced under conditions of stress. When 6-day-old wheat seedlings were treated with 200 mM NaCl or 20% (w/v) PEG 6000 for 6 or 12 h, respectively, the TaPLC1 transcript level increased by 16-fold compared to the control. Western blotting showed that the TaPLC protein concentration was also maintained at a high level from 24 to 48 h during stress treatment. Together, our results indicate the possible biological functions of TaPLC1 in regulating seedling growth and the response to drought and salinity stress.


Assuntos
Regulação Enzimológica da Expressão Gênica , Regulação da Expressão Gênica de Plantas , Fosfoinositídeo Fosfolipase C/genética , Estresse Fisiológico , Triticum/genética , Sequência de Bases , Primers do DNA , Genes de Plantas , Fosfoinositídeo Fosfolipase C/antagonistas & inibidores , Filogenia , RNA Mensageiro/genética , Reação em Cadeia da Polimerase em Tempo Real , Triticum/enzimologia
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa