Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 78
Filtrar
1.
New Phytol ; 217(1): 416-427, 2018 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-29124769

RESUMO

Introgression can be an important source of adaptive phenotypes, although conversely it can have deleterious effects. Evidence for adaptive introgression is accumulating but information on the genetic architecture of introgressed traits lags behind. Here we determine trait architecture in Populus trichocarpa under introgression from P. balsamifera using admixture mapping and phenotypic analyses. Our results reveal that admixture is a key driver of clinal adaptation and suggest that the northern range extension of P. trichocarpa depends, at least in part, on introgression from P. balsamifera. However, admixture with P. balsamifera can lead to potentially maladaptive early phenology, and a reduction in growth and disease resistance in P. trichocarpa. Strikingly, an introgressed chromosome 9 haplotype block from P. balsamifera restores the late phenology and high growth parental phenotype in admixed P. trichocarpa. This epistatic restorer block may be strongly advantageous in maximizing carbon assimilation and disease resistance in the southernmost populations where admixture has been detected. We also confirm a previously demonstrated case of adaptive introgression in chromosome 15 and show that introgression generates a transgressive chlorophyll-content phenotype. We provide strong support that introgression provides a reservoir of genetic variation associated with adaptive characters that allows improved survival in new environments.


Assuntos
Adaptação Biológica/genética , Variação Genética , Genoma de Planta/genética , Populus/genética , Haplótipos , Hibridização Genética , Fenótipo , Populus/fisiologia
2.
Mol Ecol ; 27(7): 1667-1680, 2018 04.
Artigo em Inglês | MEDLINE | ID: mdl-29575353

RESUMO

Introgression can introduce novel genetic variation at a faster rate than mutation alone and result in adaptive introgression when adaptive alleles are maintained in the recipient genome over time by natural selection. A previous study from our group demonstrated adaptive introgression from Populus balsamifera into P. trichocarpa in a target genomic region. Here we expand our local ancestry analysis to the whole genome of both parents to provide a comprehensive view of introgression patterns and to identify additional candidate regions for adaptive introgression genomewide. Populus trichocarpa is a large, fast-growing tree of mild coastal regions of the Pacific Northwest, whereas P. balsamifera is a smaller stature tree of continental and boreal regions with intense winter cold. The species hybridize where they are parapatric. We detected asymmetric patterns of introgression across the whole genome of these two poplar species adapted to contrasting environments, with stronger introgression from P. balsamifera to P. trichocarpa than vice versa. Admixed P. trichocarpa individuals contained more genomic regions with unusually high levels of introgression (19 regions) and also the largest introgressed genome fragment (1.02 Mb) compared with admixed P. balsamifera (nine regions). Our analysis also revealed numerous candidate regions for adaptive introgression with strong signals of selection, notably related to disease resistance, and enriched for genes that may play crucial roles in survival and adaptation. Furthermore, we detected a potential overrepresentation of subtelomeric regions in P. balsamifera introgressed into P. trichocarpa and possible protection of sex-determining regions from interspecific gene flow.


Assuntos
Adaptação Biológica , Endogamia , Populus/fisiologia , Cromossomos de Plantas/genética , Resistência à Doença/genética , Genes de Plantas , Geografia , Filogenia , Doenças das Plantas/genética , Populus/genética , Seleção Genética , Especificidade da Espécie , Telômero/metabolismo
3.
Plant Physiol ; 173(1): 167-182, 2017 01.
Artigo em Inglês | MEDLINE | ID: mdl-27495941

RESUMO

The pollen cell wall is important for protection of male sperm from physical stresses and consists of an inner gametophyte-derived intine layer and a sporophyte-derived exine layer. The polymeric constituents of the robust exine are termed sporopollenin. The mechanisms by which sporopollenin is anchored onto microspores and polymerized in specific patterns are unknown, but the primexine, a transient cell wall matrix formed on the surface of microspores at the late tetrad stage, is hypothesized to play a key role. Arabidopsis (Arabidopsis thaliana) spongy (spg) and uneven pattern of exine (upex) mutants exhibit defective and irregular exine patterns. SPG2 (synonymous with IRREGULAR XYLEM9-LIKE [IRX9L]) encodes a family GT43 glycosyltransferase involved in xylan backbone biosynthesis, while UPEX1 encodes a family GT31 glycosyltransferase likely involved in galactosylation of arabinogalactan proteins. Imaging of developing irx9l microspores showed that the earliest detectable defect was in primexine formation. Furthermore, wild-type microspores contained primexine-localized epitopes indicative of the presence of xylan, but these were absent in irx9l These data, together with the spg phenotype of a mutant in IRX14L, which also plays a role in xylan backbone elongation, indicate the presence of xylan in pollen wall primexine, which plays a role in exine patterning on the microspore surface. We observed an aberrant primexine and irregular patterns of incipient sporopollenin deposition in upex1, suggesting that primexine-localized arabinogalactan proteins could play roles in sporopollenin adhesion and patterning early in microspore wall development. Our data provide new insights into the biochemical and functional properties of the primexine component of the microspore cell wall.


Assuntos
Proteínas de Arabidopsis/metabolismo , Arabidopsis/enzimologia , Arabidopsis/metabolismo , Parede Celular/metabolismo , Glicosiltransferases/metabolismo , Pólen/metabolismo , Alelos , Epitopos/metabolismo , Regulação da Expressão Gênica de Plantas , Imuno-Histoquímica , Mutação/genética , Fenótipo , Pólen/citologia , Pólen/ultraestrutura , Xilanos/metabolismo
4.
Plant J ; 86(5): 376-90, 2016 06.
Artigo em Inglês | MEDLINE | ID: mdl-26952251

RESUMO

Many plant genes are known to be involved in the development of cambium and wood, but how the expression and functional interaction of these genes determine the unique biology of wood remains largely unknown. We used the soc1ful loss of function mutant - the woodiest genotype known in the otherwise herbaceous model plant Arabidopsis - to investigate the expression and interactions of genes involved in secondary growth (wood formation). Detailed anatomical observations of the stem in combination with mRNA sequencing were used to assess transcriptome remodeling during xylogenesis in wild-type and woody soc1ful plants. To interpret the transcriptome changes, we constructed functional gene association networks of differentially expressed genes using the STRING database. This analysis revealed functionally enriched gene association hubs that are differentially expressed in herbaceous and woody tissues. In particular, we observed the differential expression of genes related to mechanical stress and jasmonate biosynthesis/signaling during wood formation in soc1ful plants that may be an effect of greater tension within woody tissues. Our results suggest that habit shifts from herbaceous to woody life forms observed in many angiosperm lineages could have evolved convergently by genetic changes that modulate the gene expression and interaction network, and thereby redeploy the conserved wood developmental program.


Assuntos
Proteínas de Arabidopsis/genética , Arabidopsis/genética , Regulação da Expressão Gênica de Plantas , Redes Reguladoras de Genes , Proteínas de Domínio MADS/genética , Transcriptoma , Arabidopsis/anatomia & histologia , Arabidopsis/crescimento & desenvolvimento , Câmbio/anatomia & histologia , Câmbio/genética , Câmbio/crescimento & desenvolvimento , Anotação de Sequência Molecular , Mutação , Folhas de Planta/anatomia & histologia , Folhas de Planta/genética , Folhas de Planta/crescimento & desenvolvimento , Caules de Planta/anatomia & histologia , Caules de Planta/genética , Caules de Planta/crescimento & desenvolvimento , Análise de Sequência de RNA , Madeira/análise , Madeira/genética , Madeira/crescimento & desenvolvimento
5.
Plant Cell ; 26(11): 4483-98, 2014 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-25415974

RESUMO

Pollen grains are encased by a multilayered, multifunctional wall. The sporopollenin and pollen coat constituents of the outer pollen wall (exine) are contributed by surrounding sporophytic tapetal cells. Because the biosynthesis and development of the exine occurs in the innermost cell layers of the anther, direct observations of this process are difficult. The objective of this study was to investigate the transport and assembly of exine components from tapetal cells to microspores in the intact anthers of Arabidopsis thaliana. Intrinsically fluorescent components of developing tapetum and microspores were imaged in intact, live anthers using two-photon microscopy. Mutants of ABCG26, which encodes an ATP binding cassette transporter required for exine formation, accumulated large fluorescent vacuoles in tapetal cells, with corresponding loss of fluorescence on microspores. These vacuolar inclusions were not observed in tapetal cells of double mutants of abcg26 and genes encoding the proposed sporopollenin polyketide biosynthetic metabolon (ACYL COENZYME A SYNTHETASE5, POLYKETIDE SYNTHASE A [PKSA], PKSB, and TETRAKETIDE α-PYRONE REDUCTASE1), providing a genetic link between transport by ABCG26 and polyketide biosynthesis. Genetic analysis also showed that hydroxycinnamoyl spermidines, known components of the pollen coat, were exported from tapeta prior to programmed cell death in the absence of polyketides, raising the possibility that they are incorporated into the exine prior to pollen coat deposition. We propose a model where ABCG26-exported polyketides traffic from tapetal cells to form the sporopollenin backbone, in coordination with the trafficking of additional constituents, prior to tapetum programmed cell death.


Assuntos
Transportadores de Cassetes de Ligação de ATP/metabolismo , Proteínas de Arabidopsis/metabolismo , Arabidopsis/metabolismo , Biopolímeros/metabolismo , Carotenoides/metabolismo , Regulação da Expressão Gênica de Plantas , Pólen/metabolismo , Espermidina/metabolismo , Subfamília G de Transportadores de Cassetes de Ligação de ATP , Transportadores de Cassetes de Ligação de ATP/genética , Apoptose , Arabidopsis/citologia , Arabidopsis/genética , Arabidopsis/crescimento & desenvolvimento , Proteínas de Arabidopsis/genética , Transporte Biológico , Modelos Biológicos , Mutação , Pólen/citologia , Pólen/genética , Pólen/crescimento & desenvolvimento , Policetídeo Sintases/genética , Policetídeo Sintases/metabolismo , Policetídeos/metabolismo , Vacúolos/metabolismo
6.
Plant Cell ; 26(12): 4843-61, 2014 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-25490916

RESUMO

The TALE homeodomain transcription factor KNOTTED ARABIDOPSIS THALIANA7 (KNAT7) is part of a regulatory network governing the commitment to secondary cell wall biosynthesis of Arabidopsis thaliana, where it contributes to negative regulation of this process. Here, we report that BLH6, a BELL1-LIKE HOMEODOMAIN protein, specifically interacts with KNAT7, and this interaction influences secondary cell wall development. BLH6 is a transcriptional repressor, and BLH6-KNAT7 physical interaction enhances KNAT7 and BLH6 repression activities. The overlapping expression patterns of BLH6 and KNAT7 and phenotypes of blh6, knat7, and blh6 knat7 loss-of-function mutants are consistent with the existence of a BLH6-KNAT7 heterodimer that represses commitment to secondary cell wall biosynthesis in interfascicular fibers. BLH6 and KNAT7 overexpression results in thinner interfascicular fiber secondary cell walls, phenotypes that are dependent on the interacting partner. A major impact of the loss of BLH6 and KNAT7 function is enhanced expression of the homeodomain-leucine zipper transcription factor REVOLUTA/INTERFASCICULAR FIBERLESS1 (REV/IFL1). BLH6 and KNAT7 bind to the REV promoter and repress REV expression, while blh6 and knat7 interfascicular fiber secondary cell wall phenotypes are suppressed in blh6 rev and knat7 rev double mutants, suggesting that BLH6/KNAT7 signaling acts through REV as a direct target.


Assuntos
Proteínas de Arabidopsis/genética , Proteínas de Arabidopsis/fisiologia , Arabidopsis/genética , Parede Celular/metabolismo , Regulação da Expressão Gênica de Plantas , Proteínas de Homeodomínio/genética , Proteínas de Homeodomínio/fisiologia , Proteínas Repressoras/fisiologia , Arabidopsis/crescimento & desenvolvimento , Arabidopsis/metabolismo , Arabidopsis/ultraestrutura , Proteínas de Arabidopsis/química , Proteínas de Arabidopsis/metabolismo , Sítios de Ligação , Perfilação da Expressão Gênica , Proteínas de Homeodomínio/química , Proteínas de Homeodomínio/metabolismo , Fenótipo , Folhas de Planta/genética , Folhas de Planta/crescimento & desenvolvimento , Folhas de Planta/metabolismo , Folhas de Planta/ultraestrutura , Plantas Geneticamente Modificadas/metabolismo , Regiões Promotoras Genéticas , Domínios e Motivos de Interação entre Proteínas , Proteínas Repressoras/genética , Proteínas Repressoras/metabolismo
7.
Appl Environ Microbiol ; 82(14): 4387-4400, 2016 07 15.
Artigo em Inglês | MEDLINE | ID: mdl-27208101

RESUMO

UNLABELLED: Identification of the specific genes and enzymes involved in the fungal degradation of lignocellulosic biomass derived from feedstocks with various compositions is essential to the development of improved bioenergy processes. In order to elucidate the effect of substrate composition on gene expression in wood-rotting fungi, we employed microarrays based on the annotated genomes of the brown- and white-rot fungi, Rhodonia placenta (formerly Postia placenta) and Phanerochaete chrysosporium, respectively. We monitored the expression of genes involved in the enzymatic deconstruction of the cell walls of three 4-year-old Populus trichocarpa (poplar) trees of genotypes with distinct cell wall chemistries, selected from a population of several hundred trees grown in a common garden. The woody substrates were incubated with wood decay fungi for 10, 20, and 30 days. An analysis of transcript abundance in all pairwise comparisons highlighted 64 and 84 differentially expressed genes (>2-fold, P < 0.05) in P. chrysosporium and P. placenta, respectively. Cross-fungal comparisons also revealed an array of highly differentially expressed genes (>4-fold, P < 0.01) across different substrates and time points. These results clearly demonstrate that gene expression profiles of P. chrysosporium and P. placenta are influenced by wood substrate composition and the duration of incubation. Many of the significantly expressed genes encode "proteins of unknown function," and determining their role in lignocellulose degradation presents opportunities and challenges for future research. IMPORTANCE: This study describes the variation in expression patterns of two wood-degrading fungi (brown- and white-rot fungi) during colonization and incubation on three different naturally occurring poplar substrates of differing chemical compositions, over time. The results clearly show that the two fungi respond differentially to their substrates and that several known and, more interestingly, currently unknown genes are highly misregulated in response to various substrate compositions. These findings highlight the need to characterize several unknown proteins for catalytic function but also as potential candidate proteins to improve the efficiency of enzymatic cocktails to degrade lignocellulosic substrates in industrial applications, such as in a biochemically based bioenergy platform.


Assuntos
Perfilação da Expressão Gênica , Polyporales/genética , Madeira/química , Madeira/microbiologia , Genes Fúngicos , Análise em Microsséries , Polyporales/crescimento & desenvolvimento , Polyporales/metabolismo , Populus/microbiologia
8.
Mol Ecol ; 25(11): 2427-42, 2016 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-26825293

RESUMO

Natural hybrid zones in forest trees provide systems to study the transfer of adaptive genetic variation by introgression. Previous landscape genomic studies in Populus trichocarpa, a keystone tree species, indicated genomic footprints of admixture with its sister species Populus balsamifera and identified candidate genes for local adaptation. Here, we explored the patterns of introgression and signals of local adaptation in P. trichocarpa and P. balsamifera, employing genome resequencing data from three chromosomes in pure species and admixed individuals from wild populations. Local ancestry analysis in admixed P. trichocarpa revealed a telomeric region in chromosome 15 with P. balsamifera ancestry, containing several candidate genes for local adaptation. Genomic analyses revealed signals of selection in certain genes in this region (e.g. PRR5, COMT1), and functional analyses based on gene expression variation and correlations with adaptive phenotypes suggest distinct functions of the introgressed alleles. In contrast, a block of genes in chromosome 12 paralogous to the introgressed region showed no signs of introgression or signatures of selection. We hypothesize that the introgressed region in chromosome 15 has introduced modular or cassette-like variation into P. trichocarpa. These linked adaptive mutations are associated with a block of genes in chromosome 15 that appear to have undergone neo- or subfunctionalization relative to paralogs in a duplicated region on chromosome 12 that show no signatures of adaptive variation. The association between P. balsamifera introgressed alleles with the expression of adaptive traits in P. trichocarpa supports the hypothesis that this is a case of adaptive introgression in an ecologically important foundation species.


Assuntos
Adaptação Biológica/genética , Hibridização Genética , Populus/genética , Seleção Genética , Alelos , Mapeamento Cromossômico , Cromossomos de Plantas/genética , DNA de Plantas/genética , Genoma de Planta , Haplótipos , Fenótipo , Polimorfismo de Nucleotídeo Único , Populus/classificação , Análise de Sequência de DNA , Telômero/genética
9.
BMC Genomics ; 16: 402, 2015 May 22.
Artigo em Inglês | MEDLINE | ID: mdl-25994181

RESUMO

BACKGROUND: Carbohydrate metabolism is a key feature of vascular plant architecture, and is of particular importance in large woody species, where lignocellulosic biomass is responsible for bearing the bulk of the stem and crown. Since Carbohydrate Active enZymes (CAZymes) in plants are responsible for the synthesis, modification and degradation of carbohydrate biopolymers, the differences in gene copy number and regulation between woody and herbaceous species have been highlighted previously. There are still many unanswered questions about the role of CAZymes in land plant evolution and the formation of wood, a strong carbohydrate sink. RESULTS: Here, twenty-two publically available plant genomes were used to characterize the frequency, diversity and complexity of CAZymes in plants. We find that a conserved suite of CAZymes is a feature of land plant evolution, with similar diversity and complexity regardless of growth habit and form. In addition, we compared the diversity and levels of CAZyme gene expression during wood formation in trees using mRNA-seq data from two distantly related angiosperm tree species Eucalyptus grandis and Populus trichocarpa, highlighting the major CAZyme classes involved in xylogenesis and lignocellulosic biomass production. CONCLUSIONS: CAZyme domain ratio across embryophytes is maintained, and the diversity of CAZyme domains is similar in all land plants, regardless of woody habit. The stoichiometric conservation of gene expression in woody and non-woody tissues of Eucalyptus and Populus are indicative of gene balance preservation.


Assuntos
Embriófitas/enzimologia , Embriófitas/genética , Proteínas de Plantas/genética , Madeira/metabolismo , Sequência de Bases , Evolução Biológica , Metabolismo dos Carboidratos , Sequência Conservada , Embriófitas/metabolismo , Eucalyptus/enzimologia , Eucalyptus/genética , Genoma de Planta , Proteínas de Plantas/metabolismo , Populus/enzimologia , Populus/genética
10.
BMC Genomics ; 16: 24, 2015 Jan 23.
Artigo em Inglês | MEDLINE | ID: mdl-25613058

RESUMO

BACKGROUND: QTL cloning for the discovery of genes underlying polygenic traits has historically been cumbersome in long-lived perennial plants like Populus. Linkage disequilibrium-based association mapping has been proposed as a cloning tool, and recent advances in high-throughput genotyping and whole-genome resequencing enable marker saturation to levels sufficient for association mapping with no a priori candidate gene selection. Here, multiyear and multienvironment evaluation of cell wall phenotypes was conducted in an interspecific P. trichocarpa x P. deltoides pseudo-backcross mapping pedigree and two partially overlapping populations of unrelated P. trichocarpa genotypes using pyrolysis molecular beam mass spectrometry, saccharification, and/ or traditional wet chemistry. QTL mapping was conducted using a high-density genetic map with 3,568 SNP markers. As a fine-mapping approach, chromosome-wide association mapping targeting a QTL hot-spot on linkage group XIV was performed in the two P. trichocarpa populations. Both populations were genotyped using the 34 K Populus Infinium SNP array and whole-genome resequencing of one of the populations facilitated marker-saturation of candidate intervals for gene identification. RESULTS: Five QTLs ranging in size from 0.6 to 1.8 Mb were mapped on linkage group XIV for lignin content, syringyl to guaiacyl (S/G) ratio, 5- and 6-carbon sugars using the mapping pedigree. Six candidate loci exhibiting significant associations with phenotypes were identified within QTL intervals. These associations were reproducible across multiple environments, two independent genotyping platforms, and different plant growth stages. cDNA sequencing for allelic variants of three of the six loci identified polymorphisms leading to variable length poly glutamine (PolyQ) stretch in a transcription factor annotated as an ANGUSTIFOLIA C-terminus Binding Protein (CtBP) and premature stop codons in a KANADI transcription factor as well as a protein kinase. Results from protoplast transient expression assays suggested that each of the polymorphisms conferred allelic differences in the activation of cellulose, hemicelluloses, and lignin pathway marker genes. CONCLUSION: This study illustrates the utility of complementary QTL and association mapping as tools for gene discovery with no a priori candidate gene selection. This proof of concept in a perennial organism opens up opportunities for discovery of novel genetic determinants of economically important but complex traits in plants.


Assuntos
Parede Celular/genética , Genes de Plantas , Populus/genética , Alelos , Sequência de Bases , Celulose/metabolismo , Mapeamento Cromossômico , Ligação Genética , Genótipo , Lignina/biossíntese , Escore Lod , Fenótipo , Proteínas de Plantas/química , Proteínas de Plantas/genética , Polimorfismo de Nucleotídeo Único , Locos de Características Quantitativas , Alinhamento de Sequência , Fatores de Transcrição/química , Fatores de Transcrição/genética
11.
New Phytol ; 206(4): 1391-405, 2015 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-25659405

RESUMO

Wood formation is a complex developmental process governed by genetic and environmental stimuli. Populus and Eucalyptus are fast-growing, high-yielding tree genera that represent ecologically and economically important species suitable for generating significant lignocellulosic biomass. Comparative analysis of the developing xylem and leaf transcriptomes of Populus trichocarpa and Eucalyptus grandis together with phylogenetic analyses identified clusters of homologous genes preferentially expressed during xylem formation in both species. A conserved set of 336 single gene pairs showed highly similar xylem preferential expression patterns, as well as evidence of high functional constraint. Individual members of multi-gene orthologous clusters known to be involved in secondary cell wall biosynthesis also showed conserved xylem expression profiles. However, species-specific expression as well as opposite (xylem versus leaf) expression patterns observed for a subset of genes suggest subtle differences in the transcriptional regulation important for xylem development in each species. Using sequence similarity and gene expression status, we identified functional homologs likely to be involved in xylem developmental and biosynthetic processes in Populus and Eucalyptus. Our study suggests that, while genes involved in secondary cell wall biosynthesis show high levels of gene expression conservation, differential regulation of some xylem development genes may give rise to unique xylem properties.


Assuntos
Eucalyptus/crescimento & desenvolvimento , Eucalyptus/genética , Populus/crescimento & desenvolvimento , Populus/genética , Transcriptoma/genética , Madeira/crescimento & desenvolvimento , Madeira/genética , Xilema/genética , Análise por Conglomerados , Perfilação da Expressão Gênica , Regulação da Expressão Gênica de Plantas , Genes de Plantas , Redes e Vias Metabólicas/genética , Proteínas de Plantas/química , Estrutura Terciária de Proteína , Especificidade da Espécie , Xilema/crescimento & desenvolvimento
12.
Plant Physiol ; 164(4): 1991-2010, 2014 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-24567189

RESUMO

Despite a strict conservation of the vascular tissues in vascular plants (tracheophytes), our understanding of the genetic basis underlying the differentiation of secondary cell wall-containing cells in the xylem of tracheophytes is still far from complete. Using coexpression analysis and phylogenetic conservation across sequenced tracheophyte genomes, we identified a number of Arabidopsis (Arabidopsis thaliana) genes of unknown function whose expression is correlated with secondary cell wall deposition. Among these, the Arabidopsis VASCULAR-RELATED UNKNOWN PROTEIN1 (VUP1) gene encodes a predicted protein of 24 kD with no annotated functional domains but containing domains that are highly conserved in tracheophytes. Here, we show that the VUP1 expression pattern, determined by promoter-ß-glucuronidase reporter gene expression, is associated with vascular tissues, while vup1 loss-of-function mutants exhibit collapsed morphology of xylem vessel cells. Constitutive overexpression of VUP1 caused dramatic and pleiotropic developmental defects, including severe dwarfism, dark green leaves, reduced apical dominance, and altered photomorphogenesis, resembling brassinosteroid-deficient mutants. Constitutive overexpression of VUP homologs from multiple tracheophyte species induced similar defects. Whole-genome transcriptome analysis revealed that overexpression of VUP1 represses the expression of many brassinosteroid- and auxin-responsive genes. Additionally, deletion constructs and site-directed mutagenesis were used to identify critical domains and amino acids required for VUP1 function. Altogether, our data suggest a conserved role for VUP1 in regulating secondary wall formation during vascular development by tissue- or cell-specific modulation of hormone signaling pathways.


Assuntos
Proteínas de Arabidopsis/metabolismo , Arabidopsis/crescimento & desenvolvimento , Arabidopsis/metabolismo , Reguladores de Crescimento de Plantas/metabolismo , Transdução de Sinais , Xilema/crescimento & desenvolvimento , Xilema/metabolismo , Alelos , Sequência de Aminoácidos , Arabidopsis/genética , Arabidopsis/efeitos da radiação , Proteínas de Arabidopsis/química , Brassinosteroides/metabolismo , Clorófitas/metabolismo , Biologia Computacional , Regulação da Expressão Gênica de Plantas/efeitos da radiação , Genes de Plantas , Inflorescência/anatomia & histologia , Inflorescência/metabolismo , Luz , Dados de Sequência Molecular , Mutagênese Sítio-Dirigida , Fenótipo , Fosforilação/efeitos da radiação , Feixe Vascular de Plantas/genética , Feixe Vascular de Plantas/efeitos da radiação , Regiões Promotoras Genéticas/genética , Estrutura Terciária de Proteína , Transporte Proteico/efeitos da radiação , Splicing de RNA/genética , Splicing de RNA/efeitos da radiação , Proteínas Recombinantes de Fusão/metabolismo , Plântula/genética , Transdução de Sinais/genética , Transdução de Sinais/efeitos da radiação , Frações Subcelulares/metabolismo , Xilema/efeitos da radiação
13.
Plant Physiol ; 164(2): 548-54, 2014 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-24309192

RESUMO

In plants, genes may sustain extensive pleiotropic functional properties by individually affecting multiple, distinct traits. We discuss results from three genome-wide association studies of approximately 400 natural poplar (Populus trichocarpa) accessions phenotyped for 60 ecological/biomass, wood quality, and rust fungus resistance traits. Single-nucleotide polymorphisms (SNPs) in the poplar ortholog of the class III homeodomain-leucine zipper transcription factor gene REVOLUTA (PtREV) were significantly associated with three specific traits. Based on SNP associations with fungal resistance, leaf drop, and cellulose content, the PtREV gene contains three potential regulatory sites within noncoding regions at the gene's 3' end, where alternative splicing and messenger RNA processing actively occur. The polymorphisms in this region associated with leaf abscission and cellulose content are suggested to represent more recent variants, whereas the SNP associated with leaf rust resistance may be more ancient, consistent with REV's primary role in auxin signaling and its functional evolution in supporting fundamental processes of vascular plant development.


Assuntos
Pleiotropia Genética , Técnicas Genéticas , Proteínas de Plantas/genética , Populus/genética , Desequilíbrio de Ligação/genética , Proteínas de Plantas/metabolismo , Polimorfismo de Nucleotídeo Único/genética
14.
New Phytol ; 204(3): 693-703, 2014 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-25078531

RESUMO

As molecular phylogenetic analyses incorporate ever-greater numbers of loci, cases of cytonuclear discordance - the phenomenon in which nuclear gene trees deviate significantly from organellar gene trees - are being reported more frequently. Plant examples of topological discordance, caused by recent hybridization between extant species, are well known. However, examples of branch-length discordance are less reported in plants relative to animals. We use a combination of de novo assembly and reference-based mapping using short-read shotgun sequences to construct a robust phylogeny of the plastome for multiple individuals of all the common Populus species in North America. We demonstrate a case of strikingly high plastome divergence, in contrast to little nuclear genome divergence, in two closely related balsam poplars, Populus balsamifera and Populus trichocarpa (Populus balsamifera ssp. trichocarpa). Previous studies with nuclear loci indicate that the two species (or subspecies) diverged since the late Pleistocene, whereas their plastomes indicate deep divergence, dating to at least the Pliocene (6-7 Myr ago). Our finding is in marked contrast to the estimated Pleistocene divergence of the nuclear genomes, previously calculated at 75 000 yr ago, suggesting plastid capture from a 'ghost lineage' of a now-extinct North American poplar.


Assuntos
Filogenia , Populus/genética , Sequência de Bases , Canadá , Demografia , Regulação da Expressão Gênica de Plantas , Dados de Sequência Molecular , Alinhamento de Sequência , Especificidade da Espécie , Estados Unidos
15.
New Phytol ; 201(4): 1263-1276, 2014 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-24491114

RESUMO

• Populus trichocarpa is widespread across western North America spanning extensive variation in photoperiod, growing season and climate. We investigated trait variation in P. trichocarpa using over 2000 trees from a common garden at Vancouver, Canada, representing replicate plantings of 461 genotypes originating from 136 provenance localities. • We measured 40 traits encompassing phenological events, biomass accumulation, growth rates, and leaf, isotope and gas exchange-based ecophysiology traits. With replicated plantings and 29,354 single nucleotide polymorphisms (SNPs) from 3518 genes, we estimated both broad-sense trait heritability (H(2)) and overall population genetic structure from principal component analysis. • Populus trichocarpa had high phenotypic variation and moderate/high H(2) for many traits. H(2) ranged from 0.3 to 0.9 in phenology, 0.3 to 0.8 in biomass and 0.1 to 0.8 in ecophysiology traits. Most traits correlated strongly with latitude, maximum daylength and temperature of tree origin, but not necessarily with elevation, precipitation or heat : moisture indices. Trait H(2) values reflected trait correlation strength with geoclimate variables. The population genetic structure had one significant principal component (PC1) which correlated with daylength and showed enrichment for genes relating to circadian rhythm and photoperiod. • Robust relationships between traits, population structure and geoclimate in P. trichocarpa reflect patterns which suggest that range-wide geographical and environment gradients have shaped its genotypic and phenotypic variability.


Assuntos
Meio Ambiente , Geografia , Populus/genética , Característica Quantitativa Herdável , Biomassa , Colúmbia Britânica , Clima , Ontologia Genética , Genes de Plantas , Padrões de Herança/genética , Fenótipo , Polimorfismo de Nucleotídeo Único/genética , Análise de Componente Principal
16.
New Phytol ; 203(2): 535-553, 2014 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-24750093

RESUMO

In order to uncover the genetic basis of phenotypic trait variation, we used 448 unrelated wild accessions of black cottonwood (Populus trichocarpa) from much of its range in western North America. Extensive data from large-scale trait phenotyping (with spatial and temporal replications within a common garden) and genotyping (with a 34 K Populus single nucleotide polymorphism (SNP) array) of all accessions were used for gene discovery in a genome-wide association study (GWAS). We performed GWAS with 40 biomass, ecophysiology and phenology traits and 29,355 filtered SNPs representing 3518 genes. The association analyses were carried out using a Unified Mixed Model accounting for population structure effects among accessions. We uncovered 410 significant SNPs using a Bonferroni-corrected threshold (P<1.7×10(-6)). Markers were found across 19 chromosomes, explained 1-13% of trait variation, and implicated 275 unique genes in trait associations. Phenology had the largest number of associated genes (240 genes), followed by biomass (53 genes) and ecophysiology traits (25 genes). The GWAS results propose numerous loci for further investigation. Many traits had significant associations with multiple genes, underscoring their genetic complexity. Genes were also identified with multiple trait associations within and/or across trait categories. In some cases, traits were genetically correlated while in others they were not.


Assuntos
Genética Populacional , Polimorfismo de Nucleotídeo Único , Populus/genética , Biomassa , Ecologia , Marcadores Genéticos , Estudo de Associação Genômica Ampla , América do Norte , Fenótipo , Populus/fisiologia , Característica Quantitativa Herdável
17.
Ann Bot ; 114(6): 1189-201, 2014 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-24723448

RESUMO

BACKGROUND AND AIMS: The Arabidopsis thaliana pollen cell wall is a complex structure consisting of an outer sporopollenin framework and lipid-rich coat, as well as an inner cellulosic wall. Although mutant analysis has been a useful tool to study pollen cell walls, the ultrastructure of the arabidopsis anther has proved to be challenging to preserve for electron microscopy. METHODS: In this work, high-pressure freezing/freeze substitution and transmission electron microscopy were used to examine the sequence of developmental events in the anther that lead to sporopollenin deposition to form the exine and the dramatic differentiation and death of the tapetum, which produces the pollen coat. KEY RESULTS: Cryo-fixation revealed a new view of the interplay between sporophytic anther tissues and gametophytic microspores over the course of pollen development, especially with respect to the intact microspore/pollen wall and the continuous tapetum epithelium. These data reveal the ultrastructure of tapetosomes and elaioplasts, highly specialized tapetum organelles that accumulate pollen coat components. The tapetum and middle layer of the anther also remain intact into the tricellular pollen and late uninucleate microspore stages, respectively. CONCLUSIONS: This high-quality structural information, interpreted in the context of recent functional studies, provides the groundwork for future mutant studies where tapetum and microspore ultrastructure is assessed.


Assuntos
Arabidopsis/ultraestrutura , Biopolímeros/metabolismo , Carotenoides/metabolismo , Parede Celular/metabolismo , Flores/ultraestrutura , Arabidopsis/genética , Arabidopsis/crescimento & desenvolvimento , Arabidopsis/metabolismo , Diferenciação Celular , Microscopia Crioeletrônica , Flores/genética , Flores/crescimento & desenvolvimento , Flores/metabolismo , Microscopia Eletrônica de Varredura , Microscopia Eletrônica de Transmissão , Plastídeos/metabolismo , Plastídeos/ultraestrutura , Pólen/genética , Pólen/crescimento & desenvolvimento , Pólen/metabolismo , Pólen/ultraestrutura
18.
BMC Genomics ; 14: 359, 2013 May 29.
Artigo em Inglês | MEDLINE | ID: mdl-23718132

RESUMO

BACKGROUND: Alternative splicing (AS) of genes is an efficient means of generating variation in protein structure and function. AS variation has been observed between tissues, cell types, and different treatments in non-woody plants such as Arabidopsis thaliana (Arabidopsis) and rice. However, little is known about AS patterns in wood-forming tissues and how much AS variation exists within plant populations. RESULTS: Here we used high-throughput RNA sequencing to analyze the Populus trichocarpa (P. trichocarpa) xylem transcriptome in 20 individuals from different populations across much of its range in western North America. Deep transcriptome sequencing and mapping of reads to the P. trichocarpa reference genome identified a suite of xylem-expressed genes common to all accessions. Our analysis suggests that at least 36% of the xylem-expressed genes in P. trichocarpa are alternatively spliced. Extensive AS was observed in cell-wall biosynthesis related genes such as glycosyl transferases and C2H2 transcription factors. 27902 AS events were documented and most of these events were not conserved across individuals. Differences in isoform-specific read densities indicated that 7% and 13% of AS events showed significant differences between individuals within geographically separated southern and northern populations, a level that is in general agreement with AS variation in human populations. CONCLUSIONS: This genome-wide analysis of alternative splicing reveals high levels of AS in P. trichocarpa and extensive inter-individual AS variation. We provide the most comprehensive analysis of AS in P. trichocarpa to date, which will serve as a valuable resource for the plant community to study transcriptome complexity and AS regulation during wood formation.


Assuntos
Processamento Alternativo/genética , Perfilação da Expressão Gênica/métodos , Genômica/métodos , Populus/genética , Xilema/genética , Mapeamento Cromossômico , Clonagem Molecular , DNA Complementar/genética , Etiquetas de Sequências Expressas/metabolismo , Genoma de Planta/genética , Humanos , Análise de Sequência de RNA
19.
Planta ; 237(5): 1199-211, 2013 May.
Artigo em Inglês | MEDLINE | ID: mdl-23328896

RESUMO

The Arabidopsis thaliana KNAT7 (KNOX family) and MYB75 (MYB family) transcription factors were each shown earlier to interact in yeast two-hybrid assays, and to modulate secondary cell wall formation in inflorescence stems. We demonstrate here that their interaction also occurs in vivo, and that specific domains of each protein mediate this process. The participation of these interacting transcription factors in secondary cell wall formation was then extended to the developing seed coat through the use of targeted transcript analysis and SEM in single loss-of-function mutants. Novel genetic and protein-protein interactions of MYB75 and KNAT7 with other transcription factors known to be involved in seed coat regulation were also identified. We propose that a MYB75-associated protein complex is likely to be involved in modulating secondary cell wall biosynthesis in both the Arabidopsis inflorescence stem and seed coat, and that at least some parts of the transcriptional regulatory network in the two tissues are functionally conserved.


Assuntos
Proteínas de Arabidopsis/metabolismo , Arabidopsis/metabolismo , Parede Celular/metabolismo , Caules de Planta/metabolismo , Sementes/metabolismo , Fatores de Transcrição/metabolismo , Arabidopsis/genética , Proteínas de Arabidopsis/genética , Parede Celular/genética , Regulação da Expressão Gênica de Plantas/genética , Regulação da Expressão Gênica de Plantas/fisiologia , Caules de Planta/genética , Sementes/genética , Fatores de Transcrição/genética , Técnicas do Sistema de Duplo-Híbrido
20.
Appl Environ Microbiol ; 79(8): 2560-71, 2013 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-23396333

RESUMO

In order to elucidate the effects of lignin composition on the resistance of wood to degradation by decay fungi, wood specimens from two transgenic poplar lines expressing an Arabidopsis gene encoding ferulate 5-hydroxylase (F5H) driven by the cinnimate-4-hydroxylase promoter (C4H::F5H) that increased syringyl/guaiacyl (S/G) monolignol ratios relative to those in the untransformed control wood were incubated with six different wood decay fungi. Alterations in wood weight and chemical composition were monitored over the incubation period. The results showed that transgenic poplar lines extremely rich in syringyl lignin exhibited a drastically improved resistance to degradation by all decay fungi evaluated. Lignin monomer composition and its distribution among cell types and within different cell layers were the sole wood chemistry parameters determining wood durability. Since transgenic poplars with exceedingly high syringyl contents were recalcitrant to degradation, where wood durability is a critical factor, these genotypes may offer improved performance.


Assuntos
Fungos/metabolismo , Lignina/metabolismo , Populus/microbiologia , Madeira/microbiologia , Arabidopsis/genética , Proteínas de Arabidopsis/genética , Sistema Enzimático do Citocromo P-450/genética , Lignina/química , Lignina/genética , Plantas Geneticamente Modificadas/metabolismo , Populus/metabolismo , Regiões Promotoras Genéticas
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa