RESUMO
Metal oxide nanoparticles (NPs), such as ZnO, ZnFe2O4, and Fe2O3, are widely used in industry. However, little is known about the cellular pathways involved in their potential toxicity. Here, we particularly investigated the key molecular pathways that are switched on after exposure to sub-toxic doses of ZnO, ZnFe2O4, and Fe2O3 in the in vitro rat alveolar macrophages (NR8383). As in our model, the calculated IC50 were respectively 16, 68, and more than 200 µg/mL for ZnO, ZnFe2O4, and Fe2O3; global gene and protein expression profiles were only analyzed after exposure to ZnO and ZnFe2O4 NPs. Using a rat genome microarray technology, we found that 985 and 1209 genes were significantly differentially expressed in NR8383 upon 4 h exposure to » IC50 of ZnO and ZnFe2O4 NPs, respectively. It is noteworthy that metallothioneins were overexpressed genes following exposure to both NPs. Moreover, Ingenuity Pathway Analysis revealed that the top canonical pathway disturbed in NR8383 exposed to ZnO and ZnFe2O4 NPs was eIF2 signaling involved in protein homeostasis. Quantitative mass spectrometry approach performed from both NR8383 cell extracts and culture supernatant indicated that 348 and 795 proteins were differentially expressed upon 24 h exposure to » IC50 of ZnO and ZnFe2O4 NPs, respectively. Bioinformatics analysis revealed that the top canonical pathways disturbed in NR8383 were involved in protein homeostasis and cholesterol biosynthesis for both exposure conditions. While VEGF signaling was specific to ZnO exposure, iron homeostasis signaling pathway was specific to ZnFe2O4 NPs. Overall, the study provides resource of transcriptional and proteomic markers of response to ZnO and ZnFe2O4 NP-induced toxicity through combined transcriptomics, proteomics, and bioinformatics approaches.
Assuntos
Macrófagos Alveolares/efeitos dos fármacos , Nanopartículas Metálicas/efeitos adversos , Animais , Linhagem Celular , Biologia Computacional/métodos , Homeostase , Metabolismo dos Lipídeos/efeitos dos fármacos , Lipídeos/química , Nanopartículas Magnéticas de Óxido de Ferro/toxicidade , Nanopartículas Metálicas/toxicidade , Nanopartículas/química , Nanopartículas/toxicidade , Proteômica/métodos , Ratos , Transdução de Sinais , Óxido de Zinco/química , Óxido de Zinco/toxicidadeRESUMO
Unfortunately, the author names in the author group section were incorrectly captured in the published online paper.
RESUMO
nvestigations on adverse biological effects of nanoparticles (NP) are performed usually either in vivo on rodents or in vitro under submerged conditions where NP are in suspension into cell culture media. However, sedimentation of NP in vitro is a continuous process and to assess the exact deposited cellular dose remains difficult, as the cellular internal dose is a function of time. Moreover, the cellular responses to NP under submerged culture conditions or by exposing rodents by nose-only to NP aerosols might differ from those observed at physiological settings at the air-liquid interface (ALI). Rat alveolar NR8383 macrophages were exposed to aerosols at the air-liquid interface. We studied TiO2 NM105, a mixture of anatase and rutile. NR8383 cells were exposed to a single dose of 3.0 cm2/cm2 of TiO2 aerosol. Following RNA extraction, transcriptome allowing full coverage of the rat genome was performed, and differentially expressed genes were retrieved. Their products were analyzed for functions and interaction with String DB. Only 126 genes were differentially expressed and 98 were recognized by String DB and give us the gene expression signature of exposed rat alveolar NR8383 macrophages. Among them, 13 display relationships at a high confidence level and the ten most differentially expressed compared to unexposed cells were: Chac1, Ccl4, Zfp668, Fam129b, Nab2, Txnip, Id1, Cdc42ep3, Dusp6 and Myc, ranked from the most overexpressed to the most under-expressed. Some of them were previously described as over or under-expressed in NP exposed cell systems. We validated in our laboratory an easy-to-use device and a physiological relevant paradigm for studying the effects of cell exposure to TiO2. Ccl4 gene expression seems to be a positive marker of exposure evidenced as well as in vivo or in both in vitro conditions.
Assuntos
Nanopartículas/toxicidade , Titânio/toxicidade , Aerossóis/toxicidade , Animais , Linhagem Celular , Expressão Gênica/efeitos dos fármacos , Macrófagos/efeitos dos fármacos , Ratos , Suspensões/toxicidade , Transcriptoma/efeitos dos fármacosRESUMO
Functionalized multi-walled carbon nanotubes (MWCNT) have become the focus of increased research interest, particularly in their application as tools in different areas, such as the biomedical field. Despite the benefits associated with functionalization of MWCNT, particularly in overcoming issues relating to solubility, several studies have demonstrated that these functionalized nanoparticles display different toxicity profiles. For this study, we aim to compare NR8383 cells responses to three well-characterized MWCNT with varying functional groups. This study employed cytotoxicity assays, transcriptomics and proteomics to assess their toxicity using NR8383 rat alveolar macrophages as an in vitro model. The study findings indicated that all MWCNT altered ribosomal protein translation, cytoskeleton arrangement and induced pro-inflammatory response. Only functionalized MWCNT alter mTOR signaling pathway in conjunction with increased Lamtor gene expression. Furthermore, the type of functionalization was also important, with cationic MWCNT activating the transcription factor EB and inducing autophagy while the anionic MWCNT altering eukaryotic translation initiation factor 4 (EIF4) and phosphoprotein 70 ribosomal protein S6 kinase (p70S6K) signaling pathway as well as upregulation Tlr2 gene expression. This study proposes that MWCNT toxicity mechanisms are functionalization dependent and provides evidence that inflammatory response is a key event of carbon nanotubes toxicity.
Assuntos
Perfilação da Expressão Gênica , Macrófagos Alveolares/efeitos dos fármacos , Nanotubos de Carbono/química , Nanotubos de Carbono/toxicidade , Animais , Autofagia , Cátions , Linhagem Celular , Sobrevivência Celular/efeitos dos fármacos , Dano ao DNA/efeitos dos fármacos , Expressão Gênica , L-Lactato Desidrogenase/metabolismo , Macrófagos Alveolares/metabolismo , Fator 2 Relacionado a NF-E2/genética , Fator 2 Relacionado a NF-E2/metabolismo , Nanoestruturas/química , Tamanho da Partícula , Proteômica , Ratos , Ubiquitina-Proteína Ligases/genética , Ubiquitina-Proteína Ligases/metabolismoRESUMO
There are many studies concerning titanium dioxide (TiO2) nanoparticles (NP) toxicity. Nevertheless, there are few publications comparing in vitro and in vivo exposure, and even less comparing air-liquid interface exposure (ALI) with other in vitro and in vivo exposures. The identification and validation of common markers under different exposure conditions are relevant for the development of smart and quick nanotoxicity tests. In this work, cell viability was assessed in vitro by WST-1 and LDH assays after the exposure of NR8383 cells to TiO2 NP sample. To evaluate in vitro gene expression profile, NR8383 cells were exposed to TiO2 NP during 4 h at 3 cm2 of TiO2 NP/cm2 of cells or 19 µg/mL, in two settings-submerged cultures and ALI. For the in vivo study, Fischer 344 rats were exposed by inhalation to a nanostructured aerosol at a concentration of 10 mg/m3, 6 h/day, 5 days/week for 4 weeks. This was followed immediately by gene expression analysis. The results showed a low cytotoxic potential of TiO2 NP on NR8383 cells. Despite the absence of toxicity at the doses studied, the different exposures to TiO2 NP induce 18 common differentially expressed genes (DEG) which are involved in mitosis regulation, cell proliferation and apoptosis and inflammation transport of membrane proteins. Among these genes, we noticed the upregulation of Ccl4, Osm, Ccl7 and Bcl3 genes which could be suggested as early response biomarkers after exposure to TiO2 NP. On the other hand, the comparison of the three models helped us to validate the alternative ones, namely submerged and ALI approaches.
Assuntos
Nanopartículas/toxicidade , Titânio/toxicidade , Administração por Inalação , Aerossóis/toxicidade , Animais , Apoptose/efeitos dos fármacos , Biomarcadores/metabolismo , Linhagem Celular , Proliferação de Células/efeitos dos fármacos , Sobrevivência Celular/efeitos dos fármacos , Inflamação , Masculino , Proteínas de Membrana/metabolismo , Mitose/efeitos dos fármacos , Nanoestruturas/toxicidade , Ratos , Ratos Endogâmicos F344 , Transcriptoma/efeitos dos fármacosRESUMO
Human exposure to airborne carbon nanotubes (CNT) is increasing because of their applications in different sectors; therefore, they constitute a biological hazard. Consequently, developing studies on CNT toxicity become a necessity. CNTs can have different properties in term of length, size and charge. Here, we compared the cellular effect of multiwall (MWCNTs) and single wall CNTs (SWCNTs). MWCNTs consist of multiple layers of graphene, while SWCNTs are monolayers. The effects of MWCNTs and SWCNTs were evaluated by the water-soluble tetrazolium salt cell proliferation assay on NR8383 cells, rat alveolar macrophage cell line (NR8383). After 24 hours of exposure, MWCNTs showed higher toxicity (50% inhibitory concentration [IC50 ] = 3.2 cm2 /cm2 ) than SWCNTs (IC50 = 44 cm2 /cm2 ). Only SWCNTs have induced NR8383 cells apoptosis as assayed by flow cytometry using the annexin V/IP staining test. The expression of genes involved in oxidative burst (Ncf1), inflammation (Nfκb, Tnf-α, Il-6 and Il-1ß), mitochondrial damage (Opa) and apoptotic balance (Pdcd4, Bcl-2 and Casp-8) was determined. We found that MWCNT exposure predominantly induce inflammation, while SWCNTs induce apoptosis and impaired mitochondrial function. Our results clearly suggest that MWCNTs are ideal candidates for acute inflammation induction. In vivo studies are required to confirm this hypothesis. However, we conclude that toxicity of CNTs is dependent on their physical and chemical characteristics.
Assuntos
Poluentes Atmosféricos/toxicidade , Macrófagos Alveolares/efeitos dos fármacos , Nanotubos de Carbono/toxicidade , Poluentes Atmosféricos/química , Animais , Linhagem Celular , Nanotubos de Carbono/química , Tamanho da Partícula , Ratos , Propriedades de SuperfícieRESUMO
On a daily basis, people are exposed to a multitude of health-hazardous airborne particulate matter with notable deposition in the fragile alveolar region of the lungs. Hence, there is a great need for identification and prediction of material-associated diseases, currently hindered due to the lack of in-depth understanding of causal relationships, in particular between acute exposures and chronic symptoms. By applying advanced microscopies and omics to in vitro and in vivo systems, together with in silico molecular modeling, it is determined herein that the long-lasting response to a single exposure can originate from the interplay between the newly discovered nanomaterial quarantining and nanomaterial cycling between different lung cell types. This new insight finally allows prediction of the spectrum of lung inflammation associated with materials of interest using only in vitro measurements and in silico modeling, potentially relating outcomes to material properties for a large number of materials, and thus boosting safe-by-design-based material development. Because of its profound implications for animal-free predictive toxicology, this work paves the way to a more efficient and hazard-free introduction of numerous new advanced materials into our lives.
Assuntos
Simulação por Computador , Inalação , Pulmão/efeitos dos fármacos , Pulmão/patologia , Material Particulado/toxicidade , Doença Crônica , Epitélio/efeitos dos fármacos , Epitélio/metabolismo , Epitélio/patologia , Inflamação/induzido quimicamente , Inflamação/metabolismo , Inflamação/patologia , Pulmão/metabolismo , Tamanho da Partícula , Material Particulado/química , Material Particulado/metabolismo , Segurança , Testes de ToxicidadeRESUMO
This work describes the preparation of molecularly imprinted polymer (MIP)-modified core/shell CdTe0.5S0.5/ZnS quantum dots (QDs). The QDs@MIP particles were used for the selective and sensitive detection of dopamine (DA). Acrylamide, which is able to form hydrogen bonds with DA, and ethylene glycol dimethylacrylate (EGDMA) as cross-linker were used for the preparation of the MIP. Highly cross-linked polymer particles with sizes up to 1 µm containing the dots were obtained after the polymerization. After the removal of the DA template, MIP-modified QDs (QDs@MIP) exhibit a high photoluminescence (PL) with an intensity similar to that of QDs embedded in the nonimprinted polymer (NIP). A linear PL decrease was observed upon addition of DA to QDs@MIP and the PL response was in the linear ranges from 2.63 µM to 26.30 µM with a limit of detection of 6.6 nM. The PL intensity of QDs@MIP was quenched selectively by DA. The QDs@MIP particles developed in this work are easily prepared and of low cost and are therefore of high interest for the sensitive and selective detection of DA in biological samples.
RESUMO
Despite a wide production and use of zinc oxide nanoparticles (ZnONP), their toxicological study is only of limited number and their impact at a molecular level is seldom addressed. Thus, we have used, as a model, zinc oxide nanoparticle NM110 (ZnO110NP) exposure to PMA-differentiated THP-1 macrophages. The cell viability was studied at the cellular level using WST-1, LDH and Alamar Blue® assays, as well as at the molecular level by transcriptomic analysis. Exposure of cells to ZnO110NP for 24 h decreased their viability in a dose-dependent manner with mean inhibitory concentrations (IC50) of 8.1 µg/mL. Transcriptomic study of cells exposed to two concentrations of ZnO110NP: IC50 and a quarter of it (IC50/4) for 4 h showed that the expressions of genes involved in metal metabolism are perturbed. In addition, expression of genes acting in transcription regulation and DNA binding, as well as clusters of genes related to protein synthesis and structure were altered. It has to be noted that the expressions of metallothioneins genes (MT1, MT2) and genes of heat-shock proteins genes (HSP) were strongly upregulated for both conditions. These genes might be used as an early marker of exposure to ZnONP. On the contrary, at IC50 exposure, modifications of gene expression involved in inflammation, apoptosis and mitochondrial suffering were noted indicating a less specific cellular response. Overall, this study brings a resource of transcriptional data for ZnONP toxicity for further mechanistic studies.