Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Phys Chem Chem Phys ; 20(20): 13952-13961, 2018 May 23.
Artigo em Inglês | MEDLINE | ID: mdl-29744487

RESUMO

Micellisation of surfactants in deep eutectic solvents has been recently demonstrated to provide a controllable way to modify micelle morphology. Ion-pair interactions between the solvent and the surfactant headgroup were identified as affecting the micellisation by modifying the charge density of the micelle. Here we explore the micellisation of dodecylsulfate surfactants with different counterions (Li+, Cs+, Mg2+, Bmim+, Emim+, cholinium+) dissolved in two deep eutectic solvents: choline chloride:urea and choline chloride:glycerol. Surface tension results show a solvent and counterion dependence of the CMC of the surfactants. Small-angle neutron scattering was subsequently used to investigate the morphology of the micelles formed. The results show that the elongation of the micelles is strongly dependent on the solvent, showing more elongated aggregates in choline chloride:urea than in choline chloride:glycerol. The morphology of micelles in DES was also found to depend on the counterion, where the affinity of binding showed similarities to that in water.

2.
J Colloid Interface Sci ; 626: 305-313, 2022 Nov 15.
Artigo em Inglês | MEDLINE | ID: mdl-35792461

RESUMO

HYPOTHESIS: Saponins are a class of plant derived surfactants which are widely used in food related foams and emulsions, aerated drinks, and in pharmaceuticals and cosmetics. As a potential biosourced and renewable ingredient in a wider range of surfactant based formulations their potential is intimately associated with their mixing with synthetic surfactants. As such the nature of the mixed saponin-surfactant self-assembly is an important characteristic to investigate and understand. The unconventional structure of the saponins compared to the conventional synthetic surfactants poses some interesting constraints on the structures of the mixed aggregates. EXPERIMENTS: Small angle neutron scattering, SANS, is used to investigate the structure of the saponin, escin, mixed with a range of nonionic surfactants with different ethylene oxide groups, from triethylene glycol monododecyl ether, C12E3, to dodecaethylene glycol monododecyl ether, C12E12. FINDINGS: The scattering data reveal a complex evolution in the solution self-assembled structure with varying escin / nonionic composition and ethylene oxide chain length. The rich structural development comprises of the evolution from the elongated micelle structure of escin to the micelle structure of the nonionic surfactant. At the intermediate solution compositions the structure is predominantly planar, comprising mostly of planar / micellar mixed phases. The nature of the planar structures depend upon the ethylene oxide chain length and the solution composition, and include lamellar, bilamellar vesicle, multilamellar vesicle, and nanovesicle structures, in common with what is observed in other surfactant mixtures.


Assuntos
Escina , Micelas , Óxido de Etileno , Soluções/química , Tensoativos/química
3.
J Colloid Interface Sci ; 598: 444-454, 2021 Sep 15.
Artigo em Inglês | MEDLINE | ID: mdl-33930748

RESUMO

There is an increased interest in the use of natural surfactant as replacements for synthetic surfactants due to their biosustainable and biocompatible properties. A category of natural surfactants which are attracting much current interest is the triterpenoid saponins; surface active components found extensively in a wide range of plant species. A wide range of different saponin structures exist, depending upon the plant species they are extracted from; but regardless of the variation in structural details they are all highly surface active glycosides. Greater exploitation and application requires a characterisation and understanding of their basic adsorption and self-assembly properties. HYPOTHESIS: Glycyrrhizic acid, extracted from Licorice root, is a monodesmosidic triterpenoid saponin. It is widely used in cosmetic and pharmaceutical applications due to its anti-inflammatory properties, and is an ingredient in foods as a sweetener additive. It has an additional attraction due to its gel forming properties at relatively low concentrations. Although it has attracted much recent attention, many of its basic surface active characteristics, adsorption and self-assembly, remain relatively unexplored. How the structure of the Glycyrrhizic acid saponin affects its surface active properties and the impact of gelation on these properties are important considerations, and to investigate these are the focus of the study. EXPERIMENTS: In this paper the adsorption properties at the air-water interface and the self-assembly in solution have been investigated using by neutron reflectivity and small angle neutron scattering; in non-gelling and gelling conditions. FINDINGS: The adsorption isotherm is determined in water and in the presence of gelling additives, and compared with the adsorption behaviour of other saponins. Gelation has minimal impact on the adsorption; apart from producing a rougher surface with a surface texture on a macroscopic length scale. Globular micelles are formed in aqueous solution with modest anisotropy, and are compared with the structure of other saponin micelles. The addition of gelling agents results in only minimal micelle growth, and the solutions remain isotropic under applied shear flow.


Assuntos
Ácido Glicirrízico , Tensoativos , Adsorção , Micelas , Propriedades de Superfície
4.
Br J Ophthalmol ; 94(8): 1057-61, 2010 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-19304581

RESUMO

BACKGROUND/AIMS: Scant consideration has been given to the variation in structure of the human amniotic membrane (AM) at source or to the significance such differences might have on its clinical transparency. Therefore, we applied our experience of quantifying corneal transparency to AM. METHODS: Following elective caesarean, AM from areas of the fetal sac distal and proximal (ie, adjacent) to the placenta was compared with freeze-dried AM. The transmission of light through the AM samples was quantified spectrophotometrically; also, tissue thickness was measured by light microscopy and refractive index by refractometry. RESULTS: Freeze-dried and freeze-thawed AM samples distal and proximal to the placenta differed significantly in thickness, percentage transmission of visible light and refractive index. The thinnest tissue (freeze-dried AM) had the highest transmission spectra. The thickest tissue (freeze-thawed AM proximal to the placenta) had the highest refractive index. Using the direct summation of fields method to predict transparency from an equivalent thickness of corneal tissue, AM was found to be up to 85% as transparent as human cornea. CONCLUSION: When preparing AM for ocular surface reconstruction within the visual field, consideration should be given to its original location from within the fetal sac and its method of preservation, as either can influence corneal transparency.


Assuntos
Âmnio/anatomia & histologia , Curativos Biológicos , Córnea/fisiologia , Âmnio/fisiologia , Liofilização , Humanos , Refratometria , Espalhamento de Radiação , Preservação de Tecido/métodos
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa