Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
Intervalo de ano de publicação
1.
J Microsc ; 2024 May 29.
Artigo em Inglês | MEDLINE | ID: mdl-38808665

RESUMO

We propose a smartphone-based optical sectioning (SOS) microscope based on the HiLo technique, with a single smartphone replacing a high-cost illumination source and a camera sensor. We built our SOS with off-the-shelf optical, mechanical cage systems with 3D-printed adapters to seamlessly integrate the smartphone with the SOS main body. The liquid light guide can be integrated with the adapter, guiding the smartphone's LED light to the digital mirror device (DMD) with neglectable loss. We used an electrically tuneable lens (ETL) instead of a mechanical translation stage to realise low-cost axial scanning. The ETL was conjugated to the objective lens's back pupil plane (BPP) to construct a telecentric design by a 4f configuration to maintain the lateral magnification for different axial positions. SOS has a 571.5 µm telecentric scanning range and an 11.7 µm axial resolution. The broadband smartphone LED torch can effectively excite fluorescent polystyrene (PS) beads. We successfully used SOS for high-contrast fluorescent PS beads imaging with different wavelengths and optical sectioning imaging of multilayer fluorescent PS beads. To our knowledge, the proposed SOS is the first smartphone-based HiLo optical sectioning microscopy (£1965), which can save around £7035 compared with a traditional HiLo system (£9000). It is a powerful tool for biomedical research in resource-limited areas.

2.
Int J Mol Sci ; 25(11)2024 May 26.
Artigo em Inglês | MEDLINE | ID: mdl-38891971

RESUMO

π-π stacking are omnipresent interactions, crucial in many areas of chemistry, and often studied using quantum chemical methods. Here, we report a simple and computationally efficient method of estimating the binding energies of stacked polycyclic aromatic hydrocarbons based on steered molecular dynamics. This method leverages the force field parameters for accurate calculation. The presented results show good agreement with those obtained through DFT at the ωB97X-D3/cc-pVQZ level of theory. It is demonstrated that this force field-driven SMD method can be applied to other aromatic molecules, allowing insight into the complexity of the stacking interactions and, more importantly, reporting π-π stacking energy values with reasonable precision.


Assuntos
Simulação de Dinâmica Molecular , Hidrocarbonetos Policíclicos Aromáticos , Hidrocarbonetos Policíclicos Aromáticos/química , Termodinâmica , Dimerização , Teoria Quântica
3.
Int J Mol Sci ; 25(1)2023 Dec 19.
Artigo em Inglês | MEDLINE | ID: mdl-38203208

RESUMO

Due to the specificity of their structure, protein systems are adapted to carry various ligands. The structure of many proteins potentially allows for two types of immobilization of a therapeutic agent, either on the outer surface of the protein or within the protein structure. The existence of two active sites in BSA's structure, the so-called Sudlow I and II, was confirmed. The conducted research involved determining the effectiveness of BSA as a potential carrier of 5-fluorouracil (5FU). 5-fluorouracil is a broad-spectrum anticancer drug targeting solid tumors. The research was carried out to estimate the physicochemical properties of the system using complementary measurement techniques. The optimization of the complex formation conditions made it possible to obtain significant correlations between the form of the drug and the effective localization of the active substance in the structure of the protein molecule. The presence of two amino groups in the 5FU structure contributes to the deprotonation of the molecule at high pH values (pH > 8) and the transition to the anionic form (AN1 and AN3). To investigate the binding affinity of the tautomeric form with BSA, UV-vis absorption, fluorescence quenching, zeta potential, QCM-D, and CD spectroscopic studies were performed. The experimental research was supported by molecular dynamics (MD) simulations and molecular docking. The simulations confirm the potential location of 5FU tautomers inside the BSA structure and on its surface.


Assuntos
Fluoruracila , Soroalbumina Bovina , Simulação de Acoplamento Molecular , Simulação de Dinâmica Molecular
4.
ACS Omega ; 9(3): 4123-4136, 2024 Jan 23.
Artigo em Inglês | MEDLINE | ID: mdl-38284092

RESUMO

Understanding the mechanism of adsorption of Rhodamine 6G (R6G) to various crystal structures of silica nanoparticles (SNPs) is important to elucidate the impact of dye size when measuring the size of the dye-SNP complex via the time-resolved fluorescence anisotropy method. In this work, molecular dynamics (MD) simulations were used to get an insight into the R6G adsorption process, which cannot be observed using experimental methods. It was found that at low pH, α-Cristobalite structured SNPs have a strong affinity to R6G; however, at high pH, more surface silanol groups undergo ionization when compared with α-Quartz, preventing the adsorption. Therefore, α-Quartz structured SNPs are more suitable for R6G adsorption at high pH than the α-Cristobalite ones. Furthermore, it was found that stable adsorption can occur only when the R6G xanthene core is oriented flat with respect to the SNP surface, indicating that the dye size does not contribute significantly to the measured size of the dye-SNP complex. The requirement of correct dipole moment orientation indicates that only one R6G molecule can adsorb on any sized SNP, and the R6G layer formation on SNP is not possible. Moreover, the dimerization process of R6G and its competition with the adsorption has been explored. It has been shown that the highest stable R6G aggregate is a dimer, and in this form, R6G does not adsorb to SNPs. Finally, using steered molecular dynamics (SMD) with constant-velocity pulling, the binding energies of R6G dimers and R6G complexes with both α-Quartz and α-Cristobalite SNPs of 40 Å diameter were estimated. These confirm that R6G adsorption is most stable on 40 Å α-Quartz at pH 7, although dimerization is equally possible.

5.
Materials (Basel) ; 17(7)2024 Apr 07.
Artigo em Inglês | MEDLINE | ID: mdl-38612200

RESUMO

We investigate the nanometrology of sub-nanometre particle sizes in industrially manufactured sodium silicate liquors at high pH using time-resolved fluorescence anisotropy. Rather than the previous approach of using a single dye label, we investigate and quantify the advantages and limitations of multiplexing two fluorescent dye labels. Rotational times of the non-binding rhodamine B and adsorbing rhodamine 6G dyes are used to independently determine the medium microviscosity and the silicate particle radius, respectively. The anisotropy measurements were performed on the range of samples prepared by diluting the stock solution of silicate to concentrations ranging between 0.2 M and 2 M of NaOH and on the stock solution at different temperatures. Additionally, it was shown that the particle size can also be measured using a single excitation wavelength when both dyes are present in the sample. The recovered average particle size has an upper limit of 7.0 ± 1.2 Å. The obtained results were further verified using small-angle X-ray scattering, with the recovered particle size equal to 6.50 ± 0.08 Å. To disclose the impact of the dye label on the measured complex size, we further investigated the adsorption state of rhodamine 6G on silica nanoparticles using molecular dynamics simulations, which showed that the size contribution is strongly impacted by the size of the nanoparticle of interest. In the case of the higher radius of curvature (less curved) of larger particles, the size contribution of the dye label is below 10%, while in the case of smaller and more curved particles, the contribution increases significantly, which also suggests that the particles of interest might not be perfectly spherical.

SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa