Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 71
Filtrar
1.
Cell ; 171(1): 229-241.e15, 2017 Sep 21.
Artigo em Inglês | MEDLINE | ID: mdl-28938115

RESUMO

Zika virus (ZIKV), a mosquito-borne flavivirus, causes devastating congenital birth defects. We isolated a human monoclonal antibody (mAb), ZKA190, that potently cross-neutralizes multi-lineage ZIKV strains. ZKA190 is highly effective in vivo in preventing morbidity and mortality of ZIKV-infected mice. NMR and cryo-electron microscopy show its binding to an exposed epitope on DIII of the E protein. ZKA190 Fab binds all 180 E protein copies, altering the virus quaternary arrangement and surface curvature. However, ZIKV escape mutants emerged in vitro and in vivo in the presence of ZKA190, as well as of other neutralizing mAbs. To counter this problem, we developed a bispecific antibody (FIT-1) comprising ZKA190 and a second mAb specific for DII of E protein. In addition to retaining high in vitro and in vivo potencies, FIT-1 robustly prevented viral escape, warranting its development as a ZIKV immunotherapy.


Assuntos
Anticorpos Monoclonais/uso terapêutico , Anticorpos Neutralizantes/uso terapêutico , Anticorpos Antivirais/uso terapêutico , Infecção por Zika virus/terapia , Zika virus/química , Sequência de Aminoácidos , Animais , Anticorpos Monoclonais/administração & dosagem , Anticorpos Monoclonais/química , Anticorpos Neutralizantes/administração & dosagem , Anticorpos Neutralizantes/química , Anticorpos Antivirais/administração & dosagem , Anticorpos Antivirais/química , Microscopia Crioeletrônica , Epitopos , Humanos , Espectroscopia de Ressonância Magnética , Camundongos , Modelos Moleculares , Alinhamento de Sequência , Proteínas do Envelope Viral/química , Zika virus/imunologia
2.
PLoS Pathog ; 20(6): e1012262, 2024 Jun 26.
Artigo em Inglês | MEDLINE | ID: mdl-38924060

RESUMO

Viral haemorrhagic fevers (VHF) pose a significant threat to human health. In recent years, VHF outbreaks caused by Ebola, Marburg and Lassa viruses have caused substantial morbidity and mortality in West and Central Africa. In 2022, an Ebola disease outbreak in Uganda caused by Sudan virus resulted in 164 cases with 55 deaths. In 2023, a Marburg disease outbreak was confirmed in Equatorial Guinea and Tanzania resulting in over 49 confirmed or suspected cases; 41 of which were fatal. There are no clearly defined correlates of protection against these VHF, impeding targeted vaccine development. Any vaccine developed should therefore induce strong and preferably long-lasting humoral and cellular immunity against these viruses. Ideally this immunity should also cross-protect against viral variants, which are known to circulate in animal reservoirs and cause human disease. We have utilized two viral vectored vaccine platforms, an adenovirus (ChAdOx1) and Modified Vaccinia Ankara (MVA), to develop a multi-pathogen vaccine regime against three filoviruses (Ebola virus, Sudan virus, Marburg virus) and an arenavirus (Lassa virus). These platform technologies have consistently demonstrated the capability to induce robust cellular and humoral antigen-specific immunity in humans, most recently in the rollout of the licensed ChAdOx1-nCoV19/AZD1222. Here, we show that our multi-pathogen vaccines elicit strong cellular and humoral immunity, induce a diverse range of chemokines and cytokines, and most importantly, confers protection after lethal Ebola virus, Sudan virus and Marburg virus challenges in a small animal model.

3.
Plant Biotechnol J ; 19(4): 745-756, 2021 04.
Artigo em Inglês | MEDLINE | ID: mdl-33099859

RESUMO

Dengue virus (DENV) is an emerging threat causing an estimated 390 million infections per year. Dengvaxia, the only licensed vaccine, may not be adequately safe in young and seronegative patients; hence, development of a safer, more effective vaccine is of great public health interest. Virus-like particles (VLPs) are a safe and very efficient vaccine strategy, and DENV VLPs have been produced in various expression systems. Here, we describe the production of DENV VLPs in Nicotiana benthamiana using transient expression. The co-expression of DENV structural proteins (SP) and a truncated version of the non-structural proteins (NSPs), lacking NS5 that contains the RNA-dependent RNA polymerase, led to the assembly of DENV VLPs in plants. These VLPs were comparable in appearance and size to VLPs produced in mammalian cells. Contrary to data from other expression systems, expression of the protein complex prM-E was not successful, and strategies used in other expression systems to improve the VLP yield did not result in increased yields in plants but, rather, increased purification difficulties. Immunogenicity assays in BALB/c mice revealed that plant-made DENV1-SP + NSP VLPs led to a higher antibody response in mice compared with DENV-E domain III displayed inside bluetongue virus core-like particles and a DENV-E domain III subunit. These results are consistent with the idea that VLPs could be the optimal approach to creating candidate vaccines against enveloped viruses.


Assuntos
Vacinas contra Dengue , Imunidade Humoral , Vacinas de Partículas Semelhantes a Vírus , Proteínas Virais/imunologia , Animais , Anticorpos Neutralizantes , Anticorpos Antivirais , Vírus da Dengue/genética , Camundongos , Camundongos Endogâmicos BALB C , Nicotiana , Vacinas de Partículas Semelhantes a Vírus/genética
4.
Emerg Infect Dis ; 26(1): 90-96, 2020 01.
Artigo em Inglês | MEDLINE | ID: mdl-31661056

RESUMO

During February 2018-January 2019, we conducted large-scale surveillance for the presence and prevalence of tick-borne encephalitis virus (TBEV) and louping ill virus (LIV) in sentinel animals and ticks in the United Kingdom. Serum was collected from 1,309 deer culled across England and Scotland. Overall, 4% of samples were ELISA-positive for the TBEV serocomplex. A focus in the Thetford Forest area had the highest proportion (47.7%) of seropositive samples. Ticks collected from culled deer within seropositive regions were tested for viral RNA; 5 of 2,041 ticks tested positive by LIV/TBEV real-time reverse transcription PCR, all from within the Thetford Forest area. From 1 tick, we identified a full-length genomic sequence of TBEV. Thus, using deer as sentinels revealed a potential TBEV focus in the United Kingdom. This detection of TBEV genomic sequence in UK ticks has important public health implications, especially for undiagnosed encephalitis.


Assuntos
Vírus da Encefalite Transmitidos por Carrapatos , Ixodidae/virologia , Animais , Cervos/parasitologia , Vírus da Encefalite Transmitidos por Carrapatos/genética , Encefalite Transmitida por Carrapatos/epidemiologia , Encefalite Transmitida por Carrapatos/transmissão , Ensaio de Imunoadsorção Enzimática , Feminino , Testes de Inibição da Hemaglutinação , Humanos , Masculino , Filogenia , RNA Viral/genética , Reação em Cadeia da Polimerase Via Transcriptase Reversa , Espécies Sentinelas/virologia , Análise de Sequência de RNA , Reino Unido/epidemiologia
5.
J Gen Virol ; 101(10): 1047-1055, 2020 10.
Artigo em Inglês | MEDLINE | ID: mdl-32667279

RESUMO

Type I interferon receptor knockout mice (strain A129) were assessed as a disease model of hantavirus infection. A range of infection routes (intramuscular, intraperitoneal and intranasal) were assessed using minimally passaged Seoul virus (strain Humber). Dissemination of virus to the spleen, kidney and lung was observed at 5 days after intramuscular and intraperitoneal challenge, which was resolved by day 14. In contrast, intranasal challenge of A129 mice demonstrated virus tropism to the lung, which was maintained to day 14 post-challenge. These data support the use of the A129 mouse model for future infection studies and the in vivo evaluation of interventions.


Assuntos
Modelos Animais de Doenças , Infecções por Hantavirus , Orthohantavírus/fisiologia , Animais , Orthohantavírus/isolamento & purificação , Orthohantavírus/patogenicidade , Infecções por Hantavirus/patologia , Infecções por Hantavirus/virologia , Febre Hemorrágica com Síndrome Renal/patologia , Febre Hemorrágica com Síndrome Renal/virologia , Rim/virologia , Fígado/patologia , Pulmão/patologia , Pulmão/virologia , Masculino , Camundongos , Camundongos Knockout , RNA Viral/análise , RNA Viral/sangue , Receptor de Interferon alfa e beta/genética , Baço/patologia , Baço/virologia , Tropismo Viral
6.
Cytokine ; 125: 154864, 2020 01.
Artigo em Inglês | MEDLINE | ID: mdl-31577989

RESUMO

Zika virus (ZIKV) is phylogenetically divided into two lineages comprising African (ZIKVAF) and Asian (ZIKVAS) genotypes. In the type-I interferon receptor deficient mouse model, ZIKVAF causes severe disease with all mice meeting humane endpoints with doses as low as 10 plaque-forming units (pfu) whereas a much milder infection is seen after challenge with ZIKVAS, including with doses as high as 106 pfu. Using this mouse model, the elucidation of cytokine, chemokine, growth factor and acute phase protein responses over the course of infection were studied to determine whether these analytes contributed to the stark difference in clinical outcome. Results demonstrated some significant differences, with the ZIKVAF infection being associated with increases in a higher number of biomarkers than ZIKVAS. When low (10 pfu) and high (106 pfu) challenge doses were compared, animals given the lower virus inoculum showed a wider range of responses, indicating a different disease progression compared to those challenged with high doses. These results aid with elucidating the different outcomes with the two lineages of ZIKV and with future work to assess pathogenicity of virus infection.


Assuntos
Proteínas de Fase Aguda/metabolismo , Quimiocinas/sangue , Citocinas/sangue , Peptídeos e Proteínas de Sinalização Intercelular/sangue , Infecção por Zika virus/metabolismo , Zika virus/patogenicidade , Animais , Quimiocinas/metabolismo , Citocinas/metabolismo , Modelos Animais de Doenças , Progressão da Doença , Inflamação/metabolismo , Inflamação/virologia , Peptídeos e Proteínas de Sinalização Intercelular/metabolismo , Masculino , Camundongos , Receptor de Interferon alfa e beta/deficiência , Receptor de Interferon alfa e beta/genética , Receptor de Interferon alfa e beta/metabolismo , Infecção por Zika virus/fisiopatologia , Infecção por Zika virus/virologia
7.
Methods ; 158: 17-21, 2019 04 01.
Artigo em Inglês | MEDLINE | ID: mdl-30771491

RESUMO

In the UK, research on hazard group 4 (HG4) pathogens requires specialised Containment Level 4 (CL4) facilities. These differ from Biosafety Level 4 (BSL4) conditions in that work is conducted in class III microbiological safety cabinets for primary containment instead of using positive pressure suits. This presents unique challenges associated with the physical restrictions of working in a limited space, and prohibits the use of many techniques and specialist equipment. In consequence, detailed studies on the biology of HG4 pathogens and in particular their immunological relationships with the host are understudied in the UK; for example, the majority of immunological assays with which the immune system is interrogated require specialist equipment that is unsuitable for CL4. Multiplexing to simultaneously measure multiple analytes is increasingly being used in immunological studies. This assay is attractive for CL4 work because it reduces the time spent in the laboratory whilst maximising the use of valuable sample volume. The Luminex microsphere approach allows for the determination of many cytokines and chemokines, however, the detection system uses fixed aligned lasers and integrated computer systems which are unsuitable for use at CL4. Therefore, we have developed an approach in which the Luminex assay is conducted within the CL4 laboratory and a formalin-fixation stage is introduced to allow for analysis to be undertaken outside of containment. Quality control preparations allow the assay characteristics to be monitored and analysis of assay performance to be evaluated. Our data demonstrate that Luminex is an applicable tool for use at CL4 and that assays can be run reliably to generate reproducible standardised data across different plates and individual experiments.


Assuntos
Contenção de Riscos Biológicos/normas , Ensaios de Triagem em Larga Escala/instrumentação , Laboratórios/normas , Microbiologia/normas , Microesferas , Serviços de Laboratório Clínico , Doenças Transmissíveis/diagnóstico , Doenças Transmissíveis/microbiologia , Fixadores/química , Formaldeído/química , Ensaios de Triagem em Larga Escala/métodos , Ensaios de Triagem em Larga Escala/normas , Humanos , Controle de Qualidade , Reprodutibilidade dos Testes , Fixação de Tecidos/métodos , Fixação de Tecidos/normas
8.
Euro Surveill ; 24(47)2019 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-31771699

RESUMO

The United Kingdom (UK) has thus far been considered to be free from tick-borne encephalitis (TBE), yet in July 2019, a German infant developed serologically diagnosed TBE following a tick bite in southern England. This first report of a probable human case together with recent findings of TBE virus in ticks in foci in England suggest that TBE may be acquired in parts of England and should be considered in patients with aetiologically-unexplained neurological manifestations.


Assuntos
Vírus da Encefalite Transmitidos por Carrapatos/isolamento & purificação , Encefalite Transmitida por Carrapatos/diagnóstico , Ixodes/virologia , Picadas de Carrapatos , Animais , Inglaterra , Infecções por Flavivirus/diagnóstico , Infecções por Flavivirus/virologia , Alemanha , Humanos , Imunoglobulina G/sangue , Imunoglobulina M/sangue , Lactente , Imageamento por Ressonância Magnética , Meningoencefalite/diagnóstico por imagem , Viagem
9.
Euro Surveill ; 24(47)2019 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-31771701

RESUMO

The presence of tick-borne encephalitis virus (TBEV) was detected in a questing tick pool in southern England in September 2019. Hitherto, TBEV had only been detected in a limited area in eastern England. This southern English viral genome sequence is distinct from TBEV-UK, being most similar to TBEV-NL. The new location of TBEV presence highlights that the diagnosis of tick-borne encephalitis should be considered in encephalitic patients in areas of the United Kingdom outside eastern England.


Assuntos
Vírus da Encefalite Transmitidos por Carrapatos/isolamento & purificação , Encefalite Transmitida por Carrapatos/diagnóstico , Ixodes/virologia , RNA Viral/genética , Animais , Cervos , Vírus da Encefalite Transmitidos por Carrapatos/genética , Encefalite Transmitida por Carrapatos/epidemiologia , Inglaterra/epidemiologia , Humanos , Filogenia , Estações do Ano , Estudos Soroepidemiológicos , Sequenciamento Completo do Genoma
10.
J Virol ; 90(20): 9305-16, 2016 10 15.
Artigo em Inglês | MEDLINE | ID: mdl-27512070

RESUMO

UNLABELLED: The Nairovirus genus of the Bunyaviridae family contains serious human and animal pathogens classified within multiple serogroups and species. Of these serogroups, the Crimean-Congo hemorrhagic fever virus (CCHFV) serogroup comprises sole members CCHFV and Hazara virus (HAZV). CCHFV is an emerging zoonotic virus that causes often-fatal hemorrhagic fever in infected humans for which preventative or therapeutic strategies are not available. In contrast, HAZV is nonpathogenic to humans and thus represents an excellent model to study aspects of CCHFV biology under conditions of more-accessible biological containment. The three RNA segments that form the nairovirus genome are encapsidated by the viral nucleocapsid protein (N) to form ribonucleoprotein (RNP) complexes that are substrates for RNA synthesis and packaging into virus particles. We used quantitative proteomics to identify cellular interaction partners of CCHFV N and identified robust interactions with cellular chaperones. These interactions were validated using immunological methods, and the specific interaction between native CCHFV N and cellular chaperones of the HSP70 family was confirmed during live CCHFV infection. Using infectious HAZV, we showed for the first time that the nairovirus N-HSP70 association was maintained within both infected cells and virus particles, where N is assembled as RNPs. Reduction of active HSP70 levels in cells by the use of small-molecule inhibitors significantly reduced HAZV titers, and a model for chaperone function in the context of high genetic variability is proposed. These results suggest that chaperones of the HSP70 family are required for nairovirus replication and thus represent a genetically stable cellular therapeutic target for preventing nairovirus-mediated disease. IMPORTANCE: Nairoviruses compose a group of human and animal viruses that are transmitted by ticks and associated with serious or fatal disease. One member is Crimean-Congo hemorrhagic fever virus (CCHFV), which is responsible for fatal human disease and is recognized as an emerging threat within Europe in response to climate change. No preventative or therapeutic strategies against nairovirus-mediated disease are currently available. Here we show that the N protein of CCHFV and the related Hazara virus interact with a cellular protein, HSP70, during both the intracellular and extracellular stages of the virus life cycle. The use of inhibitors that block HSP70 function reduces virus titers by up to 1,000-fold, suggesting that this interaction is important within the context of the nairovirus life cycle and may represent a potent target for antinairovirus therapies against which the virus cannot easily develop resistance.


Assuntos
Proteínas de Choque Térmico HSP70/metabolismo , Vírus da Febre Hemorrágica da Crimeia-Congo/genética , Vírus da Febre Hemorrágica da Crimeia-Congo/metabolismo , Nairovirus/genética , Nairovirus/metabolismo , Proteínas do Nucleocapsídeo/metabolismo , Replicação Viral/genética , Células A549 , Linhagem Celular , Linhagem Celular Tumoral , Mudança Climática , Europa (Continente) , Células HEK293 , Febre Hemorrágica da Crimeia/metabolismo , Febre Hemorrágica da Crimeia/virologia , Humanos , RNA/genética
11.
Arch Virol ; 162(7): 1951-1962, 2017 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-28316015

RESUMO

Crimean-Congo hemorrhagic fever virus (CCHFV) is a major cause of tick-borne viral hemorrhagic disease in the world. Despite of its importance as a deadly pathogen, there is currently no licensed vaccine against CCHF disease. The attachment glycoprotein of CCHFV (Gn) is a potentially important target for protective antiviral immune responses. To characterize the expression of recombinant CCHFV Gn in an insect-cell-based system, we developed a gene expression system expressing the full-length coding sequence under a polyhedron promoter in Sf9 cells using recombinant baculovirus. Recombinant Gn was purified by affinity chromatography, and the immunoreactivity of the protein was evaluated using sera from patients with confirmed CCHF infection. Codon-optimized Gn was successfully expressed, and the product had the expected molecular weight for CCHFV Gn glycoprotein of 37 kDa. In time course studies, the optimum expression of Gn occurred between 36 and 48 hours postinfection. The immunoreactivity of the recombinant protein in Western blot assay against human sera was positive and was similar to the results obtained with the anti-V5 tag antibody. Additionally, mice were subjected to subcutaneous injection with recombinant Gn, and the cellular and humoral immune response was monitored. The results showed that recombinant Gn protein was highly immunogenic and could elicit high titers of antigen-specific antibodies. Induction of the inflammatory cytokine interferon-gamma and the regulatory cytokine IL-10 was also detected. In conclusion, a recombinant baculovirus harboring CCHFV Gn was constructed and expressed in Sf9 host cells for the first time, and it was demonstrated that this approach is a suitable expression system for producing immunogenic CCHFV Gn protein without any biosafety concerns.


Assuntos
Regulação Viral da Expressão Gênica/fisiologia , Vírus da Febre Hemorrágica da Crimeia-Congo/metabolismo , Proteínas Virais/metabolismo , Animais , Baculoviridae/genética , Sequência de Bases , Códon , Citocinas/metabolismo , Feminino , Vírus da Febre Hemorrágica da Crimeia-Congo/genética , Camundongos , Camundongos Endogâmicos BALB C , Células Sf9 , Baço/metabolismo , Proteínas Virais/genética
12.
J Infect Dis ; 213(7): 1124-33, 2016 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-26715676

RESUMO

The highly glycosylated glycoprotein spike of Ebola virus (EBOV-GP1,2) is the primary target of the humoral host response. Recombinant EBOV-GP ectodomain (EBOV-GP1,2ecto) expressed in mammalian cells was used to immunize sheep and elicited a robust immune response and produced high titers of high avidity polyclonal antibodies. Investigation of the neutralizing activity of the ovine antisera in vitro revealed that it neutralized EBOV. A pool of intact ovine immunoglobulin G, herein termed EBOTAb, was prepared from the antisera and used for an in vivo guinea pig study. When EBOTAb was delivered 6 hours after challenge, all animals survived without experiencing fever or other clinical manifestations. In a second series of guinea pig studies, the administration of EBOTAb dosing was delayed for 48 or 72 hours after challenge, resulting in 100% and 75% survival, respectively. These studies illustrate the usefulness of EBOTAb in protecting against EBOV-induced disease.


Assuntos
Anticorpos Antivirais/uso terapêutico , Ebolavirus/fisiologia , Glicoproteínas/imunologia , Doença pelo Vírus Ebola/terapia , Imunoglobulina G/uso terapêutico , Glicoproteínas de Membrana/metabolismo , Animais , Anticorpos Antivirais/economia , Análise Custo-Benefício , Ebolavirus/imunologia , Feminino , Regulação Viral da Expressão Gênica , Cobaias , Células HEK293 , Doença pelo Vírus Ebola/economia , Humanos , Imunoglobulina G/economia , Glicoproteínas de Membrana/imunologia , Ligação Proteica , Estrutura Terciária de Proteína , Ovinos , Carga Viral
14.
J Gen Virol ; 96(12): 3484-3492, 2015 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-26459826

RESUMO

Ebola virus (EBOV) is highly pathogenic, with a predisposition to cause outbreaks in human populations accompanied by significant mortality. Owing to the lack of approved therapies, screening programmes of potentially efficacious drugs have been undertaken. One of these studies has demonstrated the possible utility of chloroquine against EBOV using pseudotyped assays. In mouse models of EBOV disease there are conflicting reports of the therapeutic effects of chloroquine. There are currently no reports of its efficacy using the larger and more stringent guinea pig model of infection. In this study we have shown that replication of live EBOV is impaired by chloroquine in vitro. However, no protective effects were observed in vivo when EBOV-infected guinea pigs were treated with chloroquine. These results advocate that chloroquine should not be considered as a treatment strategy for EBOV.


Assuntos
Antimaláricos/farmacologia , Cloroquina/farmacologia , Ebolavirus/efeitos dos fármacos , Doença pelo Vírus Ebola/tratamento farmacológico , Replicação Viral/efeitos dos fármacos , Animais , Antimaláricos/uso terapêutico , Cloroquina/uso terapêutico , Ebolavirus/fisiologia , Feminino , Cobaias , Doença pelo Vírus Ebola/prevenção & controle , Humanos , RNA Viral/efeitos dos fármacos
15.
BMC Struct Biol ; 15: 24, 2015 Dec 29.
Artigo em Inglês | MEDLINE | ID: mdl-26715309

RESUMO

BACKGROUND: Hazara virus (HAZV) is a member of the Bunyaviridae family of segmented negative stranded RNA viruses, and shares the same serogroup as Crimean-Congo haemorrhagic fever virus (CCHFV). CCHFV is responsible for fatal human disease with a mortality rate approaching 30 %, which has an increased recent incidence within southern Europe. There are no preventative or therapeutic treatments for CCHFV-mediated disease, and thus CCHFV is classified as a hazard group 4 pathogen. In contrast HAZV is not associated with serious human disease, although infection of interferon receptor knockout mice with either CCHFV or HAZV results in similar disease progression. To characterise further similarities between HAZV and CCHFV, and support the use of HAZV as a model for CCHFV infection, we investigated the structure of the HAZV nucleocapsid protein (N) and compared it to CCHFV N. N performs an essential role in the viral life cycle by encapsidating the viral RNA genome, and thus, N represents a potential therapeutic target. RESULTS: We present the purification, crystallisation and crystal structure of HAZV N at 2.7 Å resolution. HAZV N was expressed as an N-terminal glutathione S-transferase (GST) fusion protein then purified using glutathione affinity chromatography followed by ion-exchange chromatography. HAZV N crystallised in the P212121 space group with unit cell parameters a = 64.99, b = 76.10, and c = 449.28 Å. HAZV N consists of a globular domain formed mostly of alpha helices derived from both the N- and C-termini, and an arm domain comprising two long alpha helices. HAZV N has a similar overall structure to CCHFV N, with their globular domains superposing with an RMSD = 0.70 Å, over 368 alpha carbons that share 59 % sequence identity. Four HAZV N monomers crystallised in the asymmetric unit, and their head-to-tail assembly reveals a potential interaction site between monomers. CONCLUSIONS: The crystal structure of HAZV N reveals a close similarity to CCHFV N, supporting the use of HAZV as a model for CCHFV. Structural similarity between the N proteins should facilitate study of the CCHFV and HAZV replication cycles without the necessity of working under containment level 4 (CL-4) conditions.


Assuntos
Nairovirus , Proteínas do Nucleocapsídeo/química , Sequência de Aminoácidos , Cristalografia por Raios X , Humanos , Modelos Moleculares , Dados de Sequência Molecular , Proteínas do Nucleocapsídeo/genética , Proteínas do Nucleocapsídeo/isolamento & purificação , Proteínas do Nucleocapsídeo/metabolismo , Estrutura Secundária de Proteína , Eletricidade Estática
16.
J Proteome Res ; 13(11): 5120-35, 2014 Nov 07.
Artigo em Inglês | MEDLINE | ID: mdl-25158218

RESUMO

Viral pathogenesis in the infected cell is a balance between antiviral responses and subversion of host-cell processes. Many viral proteins specifically interact with host-cell proteins to promote virus biology. Understanding these interactions can lead to knowledge gains about infection and provide potential targets for antiviral therapy. One such virus is Ebola, which has profound consequences for human health and causes viral hemorrhagic fever where case fatality rates can approach 90%. The Ebola virus VP24 protein plays a critical role in the evasion of the host immune response and is likely to interact with multiple cellular proteins. To map these interactions and better understand the potential functions of VP24, label-free quantitative proteomics was used to identify cellular proteins that had a high probability of forming the VP24 cellular interactome. Several known interactions were confirmed, thus placing confidence in the technique, but new interactions were also discovered including one with ATP1A1, which is involved in osmoregulation and cell signaling. Disrupting the activity of ATP1A1 in Ebola-virus-infected cells with a small molecule inhibitor resulted in a decrease in progeny virus, thus illustrating how quantitative proteomics can be used to identify potential therapeutic targets.


Assuntos
Ebolavirus/patogenicidade , Mapeamento de Interação de Proteínas/métodos , ATPase Trocadora de Sódio-Potássio/metabolismo , Proteínas Virais/metabolismo , Linhagem Celular/efeitos dos fármacos , Linhagem Celular/virologia , Ebolavirus/efeitos dos fármacos , Proteínas de Fluorescência Verde/genética , Proteínas de Fluorescência Verde/metabolismo , Células HEK293/efeitos dos fármacos , Células HEK293/virologia , Interações Hospedeiro-Patógeno , Humanos , Espectrometria de Massas/métodos , Ouabaína/farmacologia , Proteômica/métodos , Reprodutibilidade dos Testes , ATPase Trocadora de Sódio-Potássio/antagonistas & inibidores , Proteínas Virais/genética
17.
Pathogens ; 13(4)2024 Apr 22.
Artigo em Inglês | MEDLINE | ID: mdl-38668303

RESUMO

The aim of this study was to determine the prevalence of six viruses, from two families of the order Bunyavirales, in the general population of central Tunisia. Sera collected from 377 asymptomatic blood donors were serologically assayed for Rift Valley fever virus (RVFV), Crimean-Congo hemorrhagic fever virus (CCHFV), and four sandfly-borne phleboviruses: Toscana virus (TOSV), sandfly fever Naples virus (SFNV), sandfly fever Sicilian virus (SFSV), and sandfly fever Cyprus virus (SFCV). Of the 377 subjects enrolled in this study, 17.3% were IgG positive for at least one of the viruses tested. The most frequently detected antibodies were against TOSV (13.3%), followed by SFCV (2.9%), RVFV (1.9%), SFSV (1.3%), and SFNV (1.1%). Only one sample was IgG positive for CCHFV. Dual reactivity was observed in nine cases: SFSV + SFCV in three cases (0.8%) and TOSV + SFNV, TOSV + SFCV, and TOSV + RVFV in two cases (0.5%) each. 15.9% of donors were IgG positive against sandfly-borne phleboviruses. Among the 65 donors IgG positive for phleboviruses, 50.8% were from rural areas compared to 12.3% from urban areas (p < 0.001); 92.3% had animals in their living quarters (p = 0.009); and 70.8% lived in the vicinity of stagnant water (p = 0.062). Seroprevalence was significantly higher among donors living with chronic diseases (p = 0.039). Furthermore, the seroprevalence of phleboviruses was higher in Kairouan, the central governorate, than in the two coastal governorates: Monastir and Sousse, with 33.4%, 24.2%, and 14.9%, respectively. The presence of antibodies in the general population needs further investigation to better assess the extent of these viruses. Only TOSV was known to have an extensive circulation in Tunisia and in North Africa. Continued surveillance and interventions are necessary to detect the emergence of all arboviruses and to prevent further transmission.

18.
Antiviral Res ; 225: 105844, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38428749

RESUMO

The Third International Conference on Crimean-Congo Hemorrhagic Fever (CCHF) was held in Thessaloniki, Greece, September 19-21, 2023, bringing together a diverse group of international partners, including public health professionals, clinicians, ecologists, epidemiologists, immunologists, and virologists. The conference was attended by 118 participants representing 24 countries and the World Health Organization (WHO). Meeting sessions covered the epidemiology of CCHF in humans; Crimean-Congo hemorrhagic fever virus (CCHFV) in ticks; wild and domestic animal hosts; molecular virology; pathogenesis and animal models; immune response related to therapeutics; and CCHF prevention in humans. The concluding session focused on recent WHO recommendations regarding disease prevention, control strategies, and innovations against CCHFV outbreaks. This meeting report summarizes lectures by the invited speakers and highlights advances in the field.


Assuntos
Vírus da Febre Hemorrágica da Crimeia-Congo , Febre Hemorrágica da Crimeia , Carrapatos , Animais , Humanos , Febre Hemorrágica da Crimeia/epidemiologia , Grécia , Surtos de Doenças
19.
Virus Res ; 346: 199409, 2024 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-38815869

RESUMO

Crimean-Congo Haemorrhagic Fever Virus (CCHFV) is spread by infected ticks or direct contact with blood, tissues and fluids from infected patients or livestock. Infection with CCHFV causes severe haemorrhagic fever in humans which is fatal in up to 83 % of cases. CCHFV is listed as a priority pathogen by the World Health Organization (WHO) and there are currently no widely-approved vaccines. Defining a serological correlate of protection against CCHFV infection would support the development of vaccines by providing a 'target threshold' for pre-clinical and clinical immunogenicity studies to achieve in subjects and potentially obviate the need for in vivo protection studies. We therefore sought to establish titratable protection against CCHFV using pooled human convalescent plasma, in a mouse model. Convalescent plasma collected from seven individuals with a known previous CCHFV virus infection were characterised using binding antibody and neutralisation assays. All plasma recognised nucleoprotein and the Gc glycoprotein, but some had a lower Gn glycoprotein response by ELISA. Pooled plasma and two individual donations from convalescent donors were administered intraperitoneally to A129 mice 24 h prior to intradermal challenge with CCHFV (strain IbAr10200). A partial protective effect was observed with all three convalescent plasmas characterised by longer survival post-challenge and reduced clinical score. These protective responses were titratable. Further characterisation of the serological reactivities within these samples will establish their value as reference materials to support assay harmonisation and accelerate vaccine development for CCHFV.


Assuntos
Anticorpos Neutralizantes , Anticorpos Antivirais , Modelos Animais de Doenças , Vírus da Febre Hemorrágica da Crimeia-Congo , Febre Hemorrágica da Crimeia , Animais , Febre Hemorrágica da Crimeia/imunologia , Febre Hemorrágica da Crimeia/prevenção & controle , Camundongos , Vírus da Febre Hemorrágica da Crimeia-Congo/imunologia , Anticorpos Antivirais/sangue , Anticorpos Antivirais/imunologia , Humanos , Anticorpos Neutralizantes/sangue , Anticorpos Neutralizantes/imunologia , Feminino , Testes de Neutralização , Plasma/imunologia , Masculino
20.
Pathogens ; 12(8)2023 Jul 26.
Artigo em Inglês | MEDLINE | ID: mdl-37623936

RESUMO

Nipah virus (NiV) is an emerging pathogen that can cause severe respiratory illness and encephalitis in humans. The main reservoir is fruit bats, distributed across a large geographical area that includes Australia, Southeast Asia, and Africa. Incursion into humans is widely reported through exposure of infected pigs, ingestion of contaminated food, or through contact with an infected person. With no approved treatments or vaccines, NiV poses a threat to human public health and has epidemic potential. To aid with the assessment of emerging interventions being developed, an expansion of preclinical testing capability is required. Given variations in the model parameters observed in different sites during establishment, optimisation of challenge routes and doses is required. Upon evaluating the hamster model, an intranasal route of challenge was compared with intraperitoneal delivery, demonstrating a more rapid dissemination to wider tissues in the latter. A dose effect was observed between those causing respiratory illness and those resulting in neurological disease. The data demonstrate the successful establishment of the hamster model of NiV disease for subsequent use in the evaluation of vaccines and antivirals.

SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa