Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 78
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Phys Chem Chem Phys ; 25(8): 6416-6423, 2023 Feb 22.
Artigo em Inglês | MEDLINE | ID: mdl-36779815

RESUMO

A chiral 3D coordination compound, [Gd2(L)2(ox)2(H2O)2], arranged around a dinuclear Gd unit has been characterized by X-ray photoemission and X-ray absorption measurements in the context of density functional theory studies. Core level photoemission of the Gd 5p multiplet splittings indicates that spin orbit coupling dominates over j-J coupling evident in the 5p core level spectra of Gd metal. Indications of spin-orbit coupling are consistent with the absence of inversion symmetry due to the ligand field. Density functional theory predicts antiferromagnet alignment of the Gd2 dimers and a band gap of the compound consistent with optical absorption.

2.
Molecules ; 28(9)2023 Apr 26.
Artigo em Inglês | MEDLINE | ID: mdl-37175145

RESUMO

Spin crossover complexes are a route toward designing molecular devices with a facile readout due to the change in conductance that accompanies the change in spin state. Because substrate effects are important for any molecular device, there are increased efforts to characterize the influence of the substrate on the spin state transition. Several classes of spin crossover molecules deposited on different types of surface, including metallic and non-metallic substrates, are comprehensively reviewed here. While some non-metallic substrates like graphite seem to be promising from experimental measurements, theoretical and experimental studies indicate that 2D semiconductor surfaces will have minimum interaction with spin crossover molecules. Most metallic substrates, such as Au and Cu, tend to suppress changes in spin state and affect the spin state switching process due to the interaction at the molecule-substrate interface that lock spin crossover molecules in a particular spin state or mixed spin state. Of course, the influence of the substrate on a spin crossover thin film depends on the molecular film thickness and perhaps the method used to deposit the molecular film.

3.
Phys Chem Chem Phys ; 24(22): 14016-14021, 2022 Jun 08.
Artigo em Inglês | MEDLINE | ID: mdl-35638717

RESUMO

X-ray photoemission spectroscopy (XPS) has been used to examine the interaction between Au and HfS3 at the Au/HfS3 interface. XPS measurements reveal dissociative chemisorption of O2, leading to the formation of an oxide of Hf at the surface of HfS3. This surface hafnium oxide, along with the weakly chemisorbed molecular species, such as O2 and H2O, are likely responsible for the observed p-type characteristics of HfS3 reported elsewhere. HfS3 devices exhibit n-type behaviour if measured in vacuum but turn p-type in air. Au thickness-dependent XPS measurements provide clear evidence of band bending as the S 2p and Hf 4f core-level peak binding energies for Au/HfS3 are found to be shifted to higher binding energies. This band bending implies formation of a Schottky-barrier at the Au/HfS3 interface, which explains the low measured charge carrier mobilities of HfS3-based devices. The transistor measurements presented herein also indicate the existence of a Schottky barrier, consistent with the XPS core-level binding energy shifts, and show that the bulk of HfS3 is n-type.

4.
Phys Chem Chem Phys ; 24(2): 883-894, 2022 Jan 04.
Artigo em Inglês | MEDLINE | ID: mdl-34908055

RESUMO

From X-ray absorption spectroscopy (XAS) and X-ray photoemission spectroscopy (XPS), it is evident that the spin state transition behavior of Fe(II) spin crossover coordination polymer crystallites at the surface differs from the bulk. A comparison of four different coordination polymers reveals that the observed surface properties may differ from bulk for a variety of reasons. There are Fe(II) spin crossover coordination polymers with either almost complete switching of the spin state at the surface or no switching at all. Oxidation, differences in surface packing, and changes in coordination could all contribute to making the surface very different from the bulk. Some Fe(II) spin crossover coordination polymers may be sufficiently photoactive so that X-ray spectroscopies cannot discern the spin state transition.

5.
Molecules ; 27(24)2022 Dec 16.
Artigo em Inglês | MEDLINE | ID: mdl-36558092

RESUMO

The coordination chemistry of uranyl ions with surface immobilized peptides was studied using X-ray photoemission spectroscopy (XPS). All the peptides in the study were modified using a six-carbon alkanethiol as a linker on a gold substrate with methylene blue as the redox label. The X-ray photoemission spectra reveal that each modified peptide interacts differently with the uranyl ion. For all the modified peptides, the XPS spectra were taken in both the absence and presence of the uranium, and their comparison reveals that the interaction depends on the chemical group present in the peptides. The XPS results show that, among all the modified peptides in the current study, the (arginine)9 (R9) modified peptide showed the largest response to uranium. In the order of response to uranium, the second largest response was shown by the modified (arginine)6 (R6) peptide followed by the modified (lysine)6 (K6) peptide. Other modified peptides, (alanine)6 (A6), (glutamic acid)6 (E6) and (serine)6 (S6), did not show any response to uranium.


Assuntos
Urânio , Espectroscopia Fotoeletrônica , Urânio/química , Peptídeos , Raios X , Íons
6.
Langmuir ; 35(46): 14797-14803, 2019 Nov 19.
Artigo em Inglês | MEDLINE | ID: mdl-31661625

RESUMO

Heterostructures consisting of 10 Šthick chromia films and 50 Šthick titania films display significant exchange bias at and above room temperature. Chromia films ∼10 Šthick were deposited by molecular beam epitaxy (MBE) of Cr at room temperature in ultrahigh vacuum on 50 Šthick TiO2-x(111) films (x < 0.3) also deposited epitaxially by MBE on Al2O3(0001). Cr deposition yields increased Ti(III) formation in the titania substrate and the formation of a Cr2O3 overlayer, without Cr/Ti interfacial mixing, as determined by in situ photoelectron spectroscopy (XPS) and electron energy loss spectroscopy (EELS). In situ low-energy electron diffraction (LEED) and XPS data indicate that the chromia overlayer is hexagonally ordered and ∼10 Šthick. Longitudinal and polar magneto-optic Kerr effect (MOKE) measurements at 285-315 K provide evidence of strong exchange bias between the boundary layer magnetization of chromia and the ferromagnetic substrate. These data demonstrate the robust room-temperature interaction of the boundary layer magnetization of a multiferroic antiferromagnet with a d0 ferromagnetic substrate.

7.
Langmuir ; 34(40): 12007-12016, 2018 10 09.
Artigo em Inglês | MEDLINE | ID: mdl-30179498

RESUMO

Boron carbide films, alloyed with aniline moieties, were deposited by plasma enhanced chemical vapor deposition (PECVD) from aniline and orthocarborane precursors and were found to exhibit composition-dependent drift carrier lifetimes as derived from I( V) and C( V)) measurements. For a film with an aniline/carborane ratio of 5:1, the effective drift carrier lifetimes are ∼80 µs at low bias voltage but quickly drop to a few microseconds with increasing bias. A film with a 10:1 aniline/carborane ratio, however, exhibited lifetimes of ∼6 µs, or less, at 1 kHz, and much smaller values at 10 kHz. These lifetimes are orders of magnitude longer than those in polyaniline films and comparable to those in PECVD carborane films without aromatic content. X-ray photoelectron spectroscopy (XPS), FTIR, and ellipsometry, combined with density functional theory (DFT)-based cluster calculations, indicate that aniline and orthocarborane moieties are largely intact within the films. Bonding occurs primarily between aniline C sites and carborane B sites, and the aniline coordination number per carborane icosahedron is ∼2 as the aniline/carborane ratio is increased from 3:1 to 10:1. This aniline/carborane coordination ratio independent of aniline/orthocarborane stoichiometry is consistent with the dependence of charge transport properties on aniline film content at high bias voltage.

8.
Opt Express ; 24(2): 1154-64, 2016 Jan 25.
Artigo em Inglês | MEDLINE | ID: mdl-26832499

RESUMO

Nanoscale plasmonic phenomena observed in single and bi-layers of molybdenum disulfide (MoS(2)) on silicon dioxide (SiO(2)) are reported. A scattering type scanning near-field optical microscope (s-SNOM) with a broadband synchrotron radiation (SR) infrared source was used. We also present complementary optical mapping using tunable CO(2)-laser radiation. Specifically, there is a correlation of the topography of well-defined MoS(2) islands grown by chemical vapor deposition, as determined by atomic force microscopy, with the infrared (IR) signature of MoS(2). The influence of MoS(2) islands on the SiO(2) phonon resonance is discussed. The results reveal the plasmonic character of the MoS(2) structures and their interaction with the SiO(2) phonons leading to an enhancement of the hybridized surface plasmon-phonon mode. A theoretical analysis shows that, in the case of monolayer islands, the coupling of the MoS(2) optical plasmon mode to the SiO(2) surface phonons does not affect the infrared spectrum significantly. For two-layer MoS(2), the coupling of the extra inter-plane acoustic plasmon mode with the SiO(2) surface transverse phonon leads to a remarkable increase of the surface phonon peak at 794 cm(-1). This is in agreement with the experimental data. These results show the capability of the s-SNOM technique to study local multiple excitations in complex non-homogeneous structures.

10.
Inorg Chem ; 55(21): 11522-11528, 2016 Nov 07.
Artigo em Inglês | MEDLINE | ID: mdl-27775334

RESUMO

Noble metal nanoclusters (NCs) play a pivotal role in bridging the gap between molecules and quantum dots. Fundamental understanding of the evolution of the structural, optical, and electronic properties of these materials in various environments is of paramount importance for many applications. Using state-of-the-art spectroscopy, we provide the first decisive experimental evidence that the structural, electronic, and optical properties of Ag44(MNBA)30 NCs can now be tailored by controlling the chemical environment. Infrared and photoelectron spectroscopies clearly indicate that there is a dimerization between two adjacent ligands capping the NCs that takes place upon lowering the pH from 13 to 7.

11.
Nano Lett ; 15(5): 3364-9, 2015 May 13.
Artigo em Inglês | MEDLINE | ID: mdl-25909996

RESUMO

The chemical vapor deposition (CVD) of molybdenum disulfide (MoS2) single-layer films onto periodically poled lithium niobate is possible while maintaining the substrate polarization pattern. The MoS2 growth exhibits a preference for the ferroelectric domains polarized "up" with respect to the surface so that the MoS2 film may be templated by the substrate ferroelectric polarization pattern without the need for further lithography. MoS2 monolayers preserve the surface polarization of the "up" domains, while slightly quenching the surface polarization on the "down" domains as revealed by piezoresponse force microscopy. Electrical transport measurements suggest changes in the dominant carrier for CVD MoS2 under application of an external voltage, depending on the domain orientation of the ferroelectric substrate. Such sensitivity to ferroelectric substrate polarization opens the possibility for ferroelectric nonvolatile gating of transition metal dichalcogenides in scalable devices fabricated free of exfoliation and transfer.

12.
ACS Appl Mater Interfaces ; 16(3): 4108-4116, 2024 Jan 24.
Artigo em Inglês | MEDLINE | ID: mdl-38193781

RESUMO

We report the observation of a magnetocapacitance effect at the interface between Ni and epitaxial nonpolar BiInO3 thin films at room temperature. A detailed surface study using X-ray photoelectron spectroscopy (XPS) reveals the formation of an intermetallic Ni-Bi alloy at the Ni/BiInO3 interface and a shift in the Bi 4f and In 3d core levels to higher binding energies with increasing Ni thickness. The latter infers band bending in BiInO3, corresponding to the formation of a p-type Schottky barrier. The current-voltage characteristics of the Ni/BiInO3/(Ba,Sr)RuO3/NdScO3(110) heterostructure show a significant dependence on the applied magnetic field and voltage cycling, which can be attributed to voltage-controlled band bending and spin-polarized charge accumulation in the vicinity of the Ni/BiInO3 interface. The magnetocapacitance effect can be realized at room temperature without involving multiferroic materials.

13.
J Phys Condens Matter ; 36(28)2024 Apr 12.
Artigo em Inglês | MEDLINE | ID: mdl-38467066

RESUMO

In an effort to reconcile the various interpretations for the cation components of the 2p3/2observed in x-ray photoelectron spectroscopy (XPS) of several spinel oxide materials, the XPS spectra of both spinel alloy nanoparticles and crystalline thin films are compared. We observed that different components of the 2p3/2core level XPS spectra, of these inverse spinel thin films, are distinctly surface and bulk weighted, indicating surface-to-bulk core level shifts in the binding energies. Surface-to-bulk core level shifts in binding energies of Ni and Fe 2p3/2core levels of NiFe2O4thin film are observed in angle-resolved XPS. The ratio between surface-weighted components and bulk-weighted components of the Ni and Fe core levels shows appreciable dependency on photoemission angle, with respect to surface normal. XPS showed that the ferrite nanoparticles NixCo1-xFe2O4(x= 0.2, 0.5, 0.8, 1) resemble the surface of the NiFe2O4thin film. Surface-to-bulk core level shifts are also observed in CoFe2O4and NiCo2O4thin films but not as significantly as in NiFe2O4thin film. Estimates of surface stoichiometry of some spinel oxide nanoparticles and thin films suggested that the apportionment between cationic species present could be farther from expectations for thin films as compared to what is seen with nanoparticles.

14.
J Phys Condens Matter ; 35(27)2023 Apr 12.
Artigo em Inglês | MEDLINE | ID: mdl-36958044

RESUMO

While induced spin polarization of a palladium (Pd) overlayer on antiferromagnetic and magneto-electric Cr2O3(0001) is possible because of the boundary polarization at the Cr2O3(0001), in the single domain state, the Pd thin film appears to be ferromagnetic on its own, likely as a result of strain. In the conduction band, we find the experimental evidence of ferromagnetic spin polarized in Pd thin films on a Cr2O3(0001) single crystal, especially in the thin limit, Pd thickness of around 1-4 nm. Indeed there is significant spin polarization in 10 Å thick Pd films on Cr2O3(0001) at 310 K, i.e. above the Néel temperature of bulk Cr2O3. While Cr2O3(0001) has surface moments that tend to align along the surface normal, for Pd on Cr2O3, the spin polarization contains an in-plane component. Strain in the Pd adlayer on Cr2O3(0001) appears correlated to the spin polarization measured in spin polarized inverse photoemission spectroscopy. Further evidence for magnetization of Pd on Cr2O3is provided by measurement of the exchange bias fields in Cr2O3/Pd(buffer)/[Co/Pd]nexchange bias systems. The magnitude of the exchange bias field is, over a wide temperature range, virtually unaffected by the Pd thickness variation between 1 and 2 nm.

15.
J Phys Condens Matter ; 35(36)2023 Jun 08.
Artigo em Inglês | MEDLINE | ID: mdl-37216948

RESUMO

Using optical characterization, it is evident that the spin state of the spin crossover molecular complex [Fe{H2B(pz)2}2(bipy)] (pz = tris(pyrazol-1-1y)-borohydride, bipy = 2,2'-bipyridine) depends on the electric polarization of the adjacent polymer ferroelectric polyvinylidene fluoride-hexafluoropropylene (PVDF-HFP) thin film. The role of the PVDF-HFP thin film is significant but complex. The UV-Vis spectroscopy measurements reveals that room temperature switching of the electronic structure of [Fe{H2B(pz)2}2(bipy)] molecules in bilayers of PVDF-HFP/[Fe{H2B(pz)2}2(bipy)] occurs as a function of ferroelectric polarization. The retention of voltage-controlled nonvolatile changes to the electronic structure in bilayers of PVDF-HFP/[Fe{H2B(pz)2}2(bipy)] strongly depends on the thickness of the PVDF-HFP layer. The PVDF-HFP/[Fe{H2B(pz)2}2(bipy)] interface may affect PVDF-HFP ferroelectric polarization retention in the thin film limit.

16.
J Phys Condens Matter ; 35(12)2023 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-36689777

RESUMO

The presence of in-plane chiral effects, hence spin-orbit coupling, is evident in the changes in the photocurrent produced in a TiS3(001) field-effect phototransistor with left versus right circularly polarized light. The direction of the photocurrent is protected by the presence of strong spin-orbit coupling and the anisotropy of the band structure as indicated in NanoARPES measurements. Dark electronic transport measurements indicate that TiS3is n-type and has an electron mobility in the range of 1-6 cm2V-1s-1.I-Vmeasurements under laser illumination indicate the photocurrent exhibits a bias directionality dependence, reminiscent of bipolar spin diode behavior. Because the TiS3contains no heavy elements, the presence of spin-orbit coupling must be attributed to the observed loss of inversion symmetry at the TiS3(001) surface.

17.
Nanoscale ; 15(5): 2044-2053, 2023 Feb 02.
Artigo em Inglês | MEDLINE | ID: mdl-36597843

RESUMO

Future molecular microelectronics require the electronic conductivity of the device to be tunable without impairing the voltage control of the molecular electronic properties. This work reports the influence of an interface between a semiconducting polyaniline polymer or a polar poly-D-lysine molecular film and one of two valence tautomeric complexes, i.e., [CoIII(SQ)(Cat)(4-CN-py)2] ↔ [CoII(SQ)2(4-CN-py)2] and [CoIII(SQ)(Cat)(3-tpp)2] ↔ [CoII(SQ)2(3-tpp)2]. The electronic transitions and orbitals are identified using X-ray photoemission, X-ray absorption, inverse photoemission, and optical absorption spectroscopy measurements that are guided by density functional theory. Except for slightly modified binding energies and shifted orbital levels, the choice of the underlying substrate layer has little effect on the electronic structure. A prominent unoccupied ligand-to-metal charge transfer state exists in [CoIII(SQ)(Cat)(3-tpp)2] ↔ [CoII(SQ)2(3-tpp)2] that is virtually insensitive to the interface between the polymer and tautomeric complexes in the CoII high-spin state.

18.
J Am Chem Soc ; 134(20): 8494-506, 2012 May 23.
Artigo em Inglês | MEDLINE | ID: mdl-22509815

RESUMO

The adsorption of molecular films made of small molecules with a large intrinsic electrical dipole has been explored. The data indicate that such dipolar molecules may be used for altering the interface dipole screening at the metal electrode interface in organic electronics. More specifically, we have investigated the surface electronic spectroscopic properties of zwitterionic molecules containing 12π electrons of the p-benzoquinonemonoimine type, C(6)H(2)(···NHR)(2)(···O)(2)(R = H (1), n-C(4)H(9) (2), C(3)H(6)-S-CH(3) (3), C(3)H(6)-O-CH(3) (4), CH(2)-C(6)H(5) (5)), adsorbed on Au. These molecules are stable zwitterions by virtue of the meta positions occupied by the nitrogen and oxygen substituents on the central ring, respectively. The structures of 2-4 have been determined by single crystal X-ray diffraction and indicate that in these molecules, two chemically connected but electronically not conjugated 6π electron subunits are present, which explains their strong dipolar character. We systematically observed that homogeneous molecular films with thickness as small as 1 nm were formed on Au, which fully cover the surface, even for a variety of R substituents. Preferential adsorption toward the patterned gold areas on SiO(2) substrates was found with 4. Optimum self-assembling of 2 and 5 results in ordered close packed films, which exhibit n-type character, based on the position of the Fermi level close to the conduction band minimum, suggesting high conductivity properties. This new type of self-assembled molecular films offers interesting possibilities for engineering metal-organic interfaces, of critical importance for organic electronics.

19.
Phys Chem Chem Phys ; 14(14): 4971-6, 2012 Apr 14.
Artigo em Inglês | MEDLINE | ID: mdl-22395096

RESUMO

Engineering the electronic structure of organics through interface manipulation, particularly the interface dipole and the barriers to charge carrier injection, is of essential importance to improve organic devices. This requires the meticulous fabrication of desired organic structures by precisely controlling the interactions between molecules. The well-known principles of organic coordination chemistry cannot be applied without proper consideration of extra molecular hybridization, charge transfer and dipole formation at the interfaces. Here we identify the interplay between energy level alignment, charge transfer, surface dipole and charge pillow effect and show how these effects collectively determine the net force between adsorbed porphyrin 2H-TPP on Cu(111). We show that the forces between supported porphyrins can be altered by controlling the amount of charge transferred across the interface accurately through the relative alignment of molecular electronic levels with respect to the Shockley surface state of the metal substrate, and hence govern the self-assembly of the molecules.

20.
Artigo em Inglês | MEDLINE | ID: mdl-24385866

RESUMO

There is compelling evidence of electron pockets, at the Fermi level, in the band structure for an organic zwitterion molecule of the p-benzoquinonemonoimine type. The electronic structure of the zwitterion molecular film has a definite, although small, density of states evident at the Fermi level as well as a nonzero inner potential and thus is very different from a true insulator. In spite of a small Brillouin zone, significant band width is observed in the intermolecular band dispersion. The results demonstrate that Bloch's theorem applies to the wave vector dependence of the electronic band structure formed from the molecular orbitals of adjacent molecules in a molecular thin film of a p-benzoquinonemonoimine type zwitterion.

SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa