Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
J Cell Sci ; 133(5)2019 10 01.
Artigo em Inglês | MEDLINE | ID: mdl-31444284

RESUMO

The neonatal Fc receptor (FcRn) rescues albumin and IgG from degradation following endocytosis and thereby extends the half-life of these plasma proteins. However, the pathways for the uptake of these soluble FcRn ligands, and the recycling itinerary of the FcRn-ligand complexes, have not been identified in primary cells. Here, we have defined the recycling of human albumin and IgG in primary mouse macrophages selectively expressing the human FcRn. Albumin is internalised by macropinocytosis; in the absence of FcRn, internalised albumin is rapidly degraded, while in the presence of FcRn albumin colocalises to SNX5-positive membrane domains and is partitioned into tubules emanating from early macropinosomes for delivery in transport carriers to the plasma membrane. Soluble monomeric IgG was also internalised by macropinocytosis and rapidly recycled by the same pathway. In contrast, the fate of IgG bound to surface Fcγ receptors differed from monomeric IgG endocytosed by macropinocytosis. Overall, our findings identify a rapid recycling pathway for FcRn ligands from early macropinosomes to the cell surface of primary cells.


Assuntos
Albuminas/metabolismo , Antígenos de Histocompatibilidade Classe I/fisiologia , Imunoglobulina G/metabolismo , Macrófagos/metabolismo , Pinocitose , Receptores Fc/fisiologia , Animais , Linhagem Celular , Endocitose , Endossomos/metabolismo , Antígenos de Histocompatibilidade Classe I/genética , Humanos , Camundongos , Camundongos Knockout , Transporte Proteico , Receptores Fc/genética
2.
J Biol Chem ; 293(17): 6363-6373, 2018 04 27.
Artigo em Inglês | MEDLINE | ID: mdl-29523681

RESUMO

The neonatal Fc receptor (FcRn) has a pivotal role in albumin and IgG homeostasis. Internalized IgG captured by FcRn under acidic endosomal conditions is recycled to the cell surface where exocytosis and a shift to neutral pH promote extracellular IgG release. Although a similar mechanism is proposed for FcRn-mediated albumin intracellular trafficking and recycling, this pathway is less well defined but is relevant to the development of therapeutics exploiting FcRn to extend the half-life of short-lived plasma proteins. Recently, a long-acting recombinant coagulation factor IX-albumin fusion protein (rIX-FP) has been approved for the management of hemophilia B. Fusion to albumin potentially enables internalized proteins to engage FcRn and escape lysosomal degradation. In this study, we present for the first time a detailed investigation of the FcRn-mediated recycling of albumin and the albumin fusion protein rIX-FP. We demonstrate that following internalization via FcRn at low pH, rIX-FP, like albumin, is detectable within the early endosome and rapidly (within 10-15 min) traffics into the Rab11+ recycling endosomes, from where it is exported from the cell. Similarly, rIX-FP and albumin taken up by fluid-phase endocytosis at physiological pH traffics into the Rab11+ recycling compartment in FcRn-positive cells but into the lysosomal compartment in FcRn-negative cells. As expected, recombinant factor IX (without albumin fusion) and an FcRn interaction-defective albumin variant localized to the lysosomal compartments of both FcRn-expressing and nonexpressing cells. These results indicate that FcRn-mediated recycling via the albumin moiety is a mechanism for the half-life extension of rIX-FP observed in clinical studies.


Assuntos
Fator IX , Antígenos de Histocompatibilidade Classe I/metabolismo , Receptores Fc/metabolismo , Proteínas Recombinantes de Fusão , Albumina Sérica Humana , Linhagem Celular , Fator IX/genética , Fator IX/farmacocinética , Fator IX/farmacologia , Meia-Vida , Hemofilia B/tratamento farmacológico , Hemofilia B/genética , Hemofilia B/metabolismo , Antígenos de Histocompatibilidade Classe I/genética , Humanos , Receptores Fc/genética , Proteínas Recombinantes de Fusão/genética , Proteínas Recombinantes de Fusão/farmacocinética , Proteínas Recombinantes de Fusão/farmacologia , Albumina Sérica Humana/genética , Albumina Sérica Humana/farmacocinética , Albumina Sérica Humana/farmacologia
4.
J Thromb Haemost ; 19(11): 2710-2725, 2021 11.
Artigo em Inglês | MEDLINE | ID: mdl-34333849

RESUMO

BACKGROUND: We have recently reported on a recombinant von Willebrand factor (VWF) D'D3 albumin fusion protein (rD'D3-FP) developed to extend the half-life of coagulation factor VIII (FVIII) for the treatment of hemophilia A. Based on predictive modelling presented in this study, we hypothesized that modifying rD'D3-FP to improve FVIII interaction would reduce exchange with endogenous VWF and provide additional FVIII half-life benefit. OBJECTIVES: The aim of this study was to identify novel rD'D3-FP variants with enhanced therapeutic efficacy in extending FVIII half-life. METHODS: Through both directed mutagenesis and random mutagenesis using a novel mammalian display platform, we identified novel rD'D3-FP variants with increased affinity for FVIII (rVIII-SingleChain) under both neutral and acidic conditions and assessed their ability to extend FVIII half-life in vitro and in vivo. RESULTS: In rat preclinical studies, rD'D3-FP variants with increased affinity for FVIII displayed enhanced potency, with reduced dose levels required to achieve equivalent rVIII-SingleChain half-life extension. In cell-based imaging studies in vitro, we also demonstrated reduced dissociation of rVIII-SingleChain from the rD'D3-FP variants within acidic endosomes and more efficient co-recycling of the rD'D3-FP/rVIII-SingleChain complex via the FcRn recycling system. CONCLUSIONS: In summary, at potential clinical doses, the rD'D3-FP variants provide marked benefits with respect to dose levels and half-life extension of co-administered FVIII, supporting their development for use in the treatment of hemophilia A.


Assuntos
Fator VIII , Hemofilia A , Albuminas , Animais , Fator VIII/genética , Hemofilia A/tratamento farmacológico , Hemofilia A/genética , Ratos , Proteínas Recombinantes de Fusão , Proteínas Recombinantes/genética , Fator de von Willebrand/genética
5.
Eur J Cell Biol ; 96(5): 418-431, 2017 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-28684042

RESUMO

Many membrane cargoes undergo endocytosis and intracellular recycling to the plasma membrane via the early endosomes and the recycling endosomes. However whether specific sorting signals are required for transport from early endosomes to recycling endosomes is not known and the current view is that transport to the recycling endosomes is by a passive default process. Here we show that the cytoplasmic tail of the neonatal Fc receptor (FcRn) contains discrete signals for endocytosis and for sorting to the recycling endosomes. The FcRn cytoplasmic tail has previously been shown to contain the unusual WISL motif for AP2/clathrin-mediated endocytosis. By analysing FcRn mutants and CD8/FcRn chimeric molecules, we have identified an extended WISL sequence (GLPAPWISL) which promotes sorting from the early endosomes to the recycling endosomes. The insertion of GLPAPWISL into the cytoplasmic tail of CD8 resulted in efficient endocytosis and trafficking to the recycling endosomes, with only low levels detected in the late endosomes. Replacement of the highly conserved GLAPAP sequence within the GLPAPWISL motif with alanine residues resulted in endocytosis of the CD8/FcRn chimera to the early endosomes which was then trafficked predominantly to the late endosomes rather than the recycling endosomes. These studies demonstrate that signals within the cytoplasmic domains of membrane cargo can mediate active transport from early to recycling endosomes.


Assuntos
Endocitose/fisiologia , Endossomos/metabolismo , Transporte Proteico/fisiologia , Transporte Biológico Ativo/fisiologia , Células HeLa , Antígenos de Histocompatibilidade Classe I/metabolismo , Humanos , Receptores Fc/metabolismo
6.
J Biol Chem ; 277(40): 37414-21, 2002 Oct 04.
Artigo em Inglês | MEDLINE | ID: mdl-12138165

RESUMO

We have mutated a conserved residue of the death domain of the interleukin-1 (IL-1) receptor-associated kinase (IRAK), threonine 66. The substitution of Thr-66 with alanine or glutamate prevented spontaneous activation of NF-kappaB by overexpressed IRAK but enhanced IL-1-induced activation of the factor. Like the kinase-inactivating mutation, K239S, the T66A and T66E mutations interfered with the ability of IRAK to autophosphorylate and facilitated the interactions of IRAK with TRAF6 and with the IL-1 receptor accessory protein, AcP. Wild-type IRAK constructs tagged with fluorescent proteins formed complexes that adopted a punctate distribution in the cytoplasm. The Thr-66 mutations prevented the formation of these complexes. Measurements of fluorescence resonance energy transfer among fluorescent constructs showed that the Thr-66 mutations abolished the capacity of IRAK to dimerize. In contrast, the K239S mutation did not inhibit dimerization of IRAK as evidenced by fluorescence resonance energy transfer measurements, even though microscopy showed that it prevented the formation of punctate complexes. Our results show that Thr-66 plays a crucial role in the ability of IRAK to form homodimers and that its kinase activity regulates its ability to form high molecular weight complexes. These properties in turn determine key aspects of the signaling function of IRAK.


Assuntos
Proteínas Quinases/química , Treonina , Células 3T3 , Sequência de Aminoácidos , Animais , Células COS , Chlorocebus aethiops , Sequência Conservada , Proteínas de Fluorescência Verde , Humanos , Quinases Associadas a Receptores de Interleucina-1 , Proteínas Luminescentes/genética , Camundongos , Microscopia Confocal , Fragmentos de Peptídeos/química , Proteínas Quinases/genética , Proteínas Quinases/fisiologia , Estrutura Secundária de Proteína , Receptores de Interleucina-1/química , Receptores de Interleucina-1/fisiologia , Proteínas Recombinantes de Fusão/química , Proteínas Recombinantes de Fusão/metabolismo , Homologia de Sequência de Aminoácidos , Transdução de Sinais/fisiologia , Transfecção
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa