RESUMO
Ecological pressures such as competition can lead individuals within a population to partition resources or habitats, but the underlying intrinsic mechanisms that determine an individual's resource use are not well understood. Here we show that an individual's own energy demand and associated competitive ability influence its resource use, but only when food is more limiting. We tested whether intraspecific variation in metabolic rate leads to microhabitat partitioning among juvenile Atlantic salmon (Salmo salar) in natural streams subjected to manipulated nutrient levels and subsequent per capita food availability. We found that individual salmon from families with a higher baseline (standard) metabolic rate (which is associated with greater competitive ability) tended to occupy faster-flowing water, but only in streams with lower per capita food availability. Faster-flowing microhabitats yield more food, but high metabolic rate fish only benefited from faster growth in streams with high food levels, presumably because in low-food environments the cost of a high metabolism offsets the benefits of acquiring a productive microhabitat. The benefits of a given metabolic rate were thus context dependent. These results demonstrate that intraspecific variation in metabolic rate can interact with resource availability to determine the spatial structuring of wild populations.
Assuntos
Metabolismo Basal/fisiologia , Ecossistema , Salmão/metabolismo , Animais , Comportamento Animal/fisiologia , Feminino , Invertebrados , Masculino , Rios , Movimentos da ÁguaRESUMO
Organisms can modify their surrounding environment, but whether these changes are large enough to feed back and alter their evolutionary trajectories is not well understood, particularly in wild populations. Here we show that nutrient pulses from decomposing Atlantic salmon (Salmo salar) parents alter selection pressures on their offspring with important consequences for their phenotypic and genetic diversity. We found a strong survival advantage to larger eggs and faster juvenile metabolic rates in streams lacking carcasses but not in streams containing this parental nutrient input. Differences in selection intensities led to significant phenotypic divergence in these two traits among stream types. Stronger selection in streams with low parental nutrient input also decreased the number of surviving families compared to streams with high parental nutrient levels. Observed effects of parent-derived nutrients on selection pressures provide experimental evidence for key components of eco-evolutionary feedbacks in wild populations.