RESUMO
Interleukin-17A (IL-17A) is a key mediator of protective immunity to yeast and bacterial infections but also drives the pathogenesis of several autoimmune diseases, such as psoriasis or psoriatic arthritis. Here we show that the tetra-transmembrane protein CMTM4 is a subunit of the IL-17 receptor (IL-17R). CMTM4 constitutively associated with IL-17R subunit C to mediate its stability, glycosylation and plasma membrane localization. Both mouse and human cell lines deficient in CMTM4 were largely unresponsive to IL-17A, due to their inability to assemble the IL-17R signaling complex. Accordingly, CMTM4-deficient mice had a severe defect in the recruitment of immune cells following IL-17A administration and were largely resistant to experimental psoriasis, but not to experimental autoimmune encephalomyelitis. Collectively, our data identified CMTM4 as an essential component of IL-17R and a potential therapeutic target for treating IL-17-mediated autoimmune diseases.
Assuntos
Artrite Psoriásica , Encefalomielite Autoimune Experimental , Psoríase , Humanos , Camundongos , Animais , Receptores de Interleucina-17/genética , Receptores de Interleucina-17/metabolismo , Interleucina-17/metabolismo , Encefalomielite Autoimune Experimental/genética , Proteínas com Domínio MARVEL/genéticaRESUMO
IL-17 mediates immune protection from fungi and bacteria, as well as it promotes autoimmune pathologies. However, the regulation of the signal transduction from the IL-17 receptor (IL-17R) remained elusive. We developed a novel mass spectrometry-based approach to identify components of the IL-17R complex followed by analysis of their roles using reverse genetics. Besides the identification of linear ubiquitin chain assembly complex (LUBAC) as an important signal transducing component of IL-17R, we established that IL-17 signaling is regulated by a robust negative feedback loop mediated by TBK1 and IKKε. These kinases terminate IL-17 signaling by phosphorylating the adaptor ACT1 leading to the release of the essential ubiquitin ligase TRAF6 from the complex. NEMO recruits both kinases to the IL-17R complex, documenting that NEMO has an unprecedented negative function in IL-17 signaling, distinct from its role in NF-κB activation. Our study provides a comprehensive view of the molecular events of the IL-17 signal transduction and its regulation.
Assuntos
Retroalimentação Fisiológica , Receptores de Interleucina-17/metabolismo , Transdução de Sinais , Proteínas Adaptadoras de Transdução de Sinal/genética , Proteínas Adaptadoras de Transdução de Sinal/metabolismo , Células HEK293 , Células HeLa , Humanos , Quinase I-kappa B/genética , Quinase I-kappa B/metabolismo , Proteínas Serina-Treonina Quinases/genética , Proteínas Serina-Treonina Quinases/metabolismo , Receptores de Interleucina-17/genéticaRESUMO
The linear ubiquitin chain assembly complex (LUBAC) is required for optimal gene activation and prevention of cell death upon activation of immune receptors, including TNFR1 1 . Deficiency in the LUBAC components SHARPIN or HOIP in mice results in severe inflammation in adulthood or embryonic lethality, respectively, owing to deregulation of TNFR1-mediated cell death2-8. In humans, deficiency in the third LUBAC component HOIL-1 causes autoimmunity and inflammatory disease, similar to HOIP deficiency, whereas HOIL-1 deficiency in mice was reported to cause no overt phenotype9-11. Here we show, by creating HOIL-1-deficient mice, that HOIL-1 is as essential for LUBAC function as HOIP, albeit for different reasons: whereas HOIP is the catalytically active component of LUBAC, HOIL-1 is required for LUBAC assembly, stability and optimal retention in the TNFR1 signalling complex, thereby preventing aberrant cell death. Both HOIL-1 and HOIP prevent embryonic lethality at mid-gestation by interfering with aberrant TNFR1-mediated endothelial cell death, which only partially depends on RIPK1 kinase activity. Co-deletion of caspase-8 with RIPK3 or MLKL prevents cell death in Hoil-1-/- (also known as Rbck1-/-) embryos, yet only the combined loss of caspase-8 with MLKL results in viable HOIL-1-deficient mice. Notably, triple-knockout Ripk3-/-Casp8-/-Hoil-1-/- embryos die at late gestation owing to haematopoietic defects that are rescued by co-deletion of RIPK1 but not MLKL. Collectively, these results demonstrate that both HOIP and HOIL-1 are essential LUBAC components and are required for embryogenesis by preventing aberrant cell death. Furthermore, they reveal that when LUBAC and caspase-8 are absent, RIPK3 prevents RIPK1 from inducing embryonic lethality by causing defects in fetal haematopoiesis.
Assuntos
Proteínas de Transporte/metabolismo , Morte Celular , Desenvolvimento Embrionário , Hematopoese , Ubiquitina-Proteína Ligases/metabolismo , Ubiquitina/metabolismo , Animais , Proteínas de Transporte/química , Proteínas de Transporte/genética , Caspase 8/genética , Caspase 8/metabolismo , Morte Celular/genética , Perda do Embrião/genética , Desenvolvimento Embrionário/genética , Células Endoteliais/citologia , Feminino , Hematopoese/genética , Camundongos , Camundongos Endogâmicos C57BL , Domínios Proteicos , Proteínas Quinases/genética , Proteína Serina-Treonina Quinases de Interação com Receptores/deficiência , Receptores Tipo I de Fatores de Necrose Tumoral/metabolismo , Transdução de Sinais , Ubiquitina-Proteína Ligases/deficiência , Ubiquitina-Proteína Ligases/genéticaRESUMO
Linear ubiquitination is a key posttranslational modification that regulates immune signaling and cell death pathways, notably tumor necrosis factor receptor 1 (TNFR1) signaling. The only known enzyme complex capable of forming linear ubiquitin chains under native conditions to date is the linear ubiquitin chain assembly complex, of which the catalytic core component is heme-oxidized iron regulatory protein 2 ubiquitin ligase-1-interacting protein (HOIP). To understand the underlying mechanisms of maintenance of liver homeostasis and the role of linear ubiquitination specifically in liver parenchymal cells, we investigated the physiological role of HOIP in the liver parenchyma. To do so, we created mice harboring liver parenchymal cell-specific deletion of HOIP (HoipΔhep mice) by crossing Hoip-floxed mice with albumin-Cre mice. HOIP deficiency in liver parenchymal cells triggered tumorigenesis at 18 months of age preceded by spontaneous hepatocyte apoptosis and liver inflammation within the first month of life. In line with the emergence of inflammation, HoipΔhep mice displayed enhanced liver regeneration and DNA damage. In addition, consistent with increased apoptosis, HOIP-deficient hepatocytes showed enhanced caspase activation and endogenous formation of a death-inducing signaling complex which activated caspase-8. Unexpectedly, exacerbated caspase activation and apoptosis were not dependent on TNFR1, whereas ensuing liver inflammation and tumorigenesis were promoted by TNFR1 signaling. CONCLUSION: The linear ubiquitin chain assembly complex serves as a previously undescribed tumor suppressor in the liver, restraining TNFR1-independent apoptosis in hepatocytes which, in its absence, is causative of TNFR1-mediated inflammation, resulting in hepatocarcinogenesis. (Hepatology 2017;65:1963-1978).
Assuntos
Apoptose/efeitos dos fármacos , Hepatite/imunologia , Neoplasias Hepáticas/patologia , Fator de Necrose Tumoral alfa/metabolismo , Ubiquitina-Proteína Ligases/metabolismo , Ubiquitina/farmacologia , Animais , Apoptose/fisiologia , Carcinogênese/patologia , Caspase 8/metabolismo , Morte Celular/efeitos dos fármacos , Modelos Animais de Doenças , Hepatite/patologia , Hepatócitos/metabolismo , Hepatócitos/patologia , Neoplasias Hepáticas/fisiopatologia , Camundongos , Camundongos Endogâmicos C57BL , Distribuição Aleatória , Valores de Referência , Células Tumorais Cultivadas , Ubiquitina-Proteína Ligases/deficiência , Ubiquitinação/efeitos dos fármacosRESUMO
Single-nucleotide polymorphism studies have linked the chromosome 17q12-q21 region, where the human orosomucoid-like (ORMDL)3 gene is localized, to the risk of asthma and several other inflammatory diseases. Although mast cells are involved in the development of these diseases, the contribution of ORMDL3 to the mast cell physiology is unknown. In this study, we examined the role of ORMDL3 in antigen-induced activation of murine mast cells with reduced or enhanced ORMDL3 expression. Our data show that in antigen-activated mast cells, reduced expression of the ORMDL3 protein had no effect on degranulation and calcium response, but significantly enhanced phosphorylation of AKT kinase at Ser 473 followed by enhanced phosphorylation and degradation of IκBα and translocation of the NF-κB p65 subunit into the nucleus. These events were associated with an increased expression of proinflammatory cytokines (TNF-α, IL-6, and IL-13), chemokines (CCL3 and CCL4), and cyclooxygenase-2 dependent synthesis of prostaglandin D2. Antigen-mediated chemotaxis was also enhanced in ORMDL3-deficient cells, whereas spreading on fibronectin was decreased. On the other hand, increased expression of ORMDL3 had no significant effect on the studied signaling events, except for reduced antigen-mediated chemotaxis. These data were corroborated by increased IgE-antigen-dependent passive cutaneous anaphylaxis in mice with locally silenced ORMDL3 using short interfering RNAs. Our data also show that antigen triggers suppression of ORMDL3 expression in the mast cells. In summary, we provide evidence that downregulation of ORMDL3 expression in mast cells enhances AKT and NF-κB-directed signaling pathways and chemotaxis and contributes to the development of mast cell-mediated local inflammation in vivo.
Assuntos
Degranulação Celular , Quimiotaxia , Mastócitos/imunologia , Proteínas de Membrana/imunologia , Receptores de IgE/imunologia , Animais , Células Cultivadas , Citocinas/genética , Citocinas/imunologia , Regulação para Baixo , Mastócitos/citologia , Mastócitos/metabolismo , Proteínas de Membrana/genética , Camundongos , Camundongos Endogâmicos BALB C , RNA Mensageiro/genética , Regulação para CimaRESUMO
Histone deacetylase (HDAC) inhibitors used in the clinic typically contain a hydroxamate zinc-binding group (ZBG). However, more recent work has shown that the use of alternative ZBGs, and, in particular, the heterocyclic oxadiazoles, can confer higher isoenzyme selectivity and more favorable ADMET profiles. Herein, we report on the synthesis and biochemical, crystallographic, and computational characterization of a series of oxadiazole-based inhibitors selectively targeting the HDAC6 isoform. Surprisingly, but in line with a very recent finding reported in the literature, a crystal structure of the HDAC6/inhibitor complex revealed that hydrolysis of the oxadiazole ring transforms the parent oxadiazole into an acylhydrazide through a sequence of two hydrolytic steps. An identical cleavage pattern was also observed both in vitro using the purified HDAC6 enzyme as well as in cellular systems. By employing advanced quantum and molecular mechanics (QM/MM) and QM calculations, we elucidated the mechanistic details of the two hydrolytic steps to obtain a comprehensive mechanistic view of the double hydrolysis of the oxadiazole ring. This was achieved by fully characterizing the reaction coordinate, including identification of the structures of all intermediates and transition states, together with calculations of their respective activation (free) energies. In addition, we ruled out several (intuitively) competing pathways. The computed data (ΔG ≈ 21 kcal·mol-1 for the rate-determining step of the overall dual hydrolysis) are in very good agreement with the experimentally determined rate constants, which a posteriori supports the proposed reaction mechanism. We also clearly (and quantitatively) explain the role of the -CF3 or -CHF2 substituent on the oxadiazole ring, which is a prerequisite for hydrolysis to occur. Overall, our data provide compelling evidence that the oxadiazole warheads can be efficiently transformed within the active sites of target metallohydrolases to afford reaction products possessing distinct selectivity and inhibition profiles.
Assuntos
Inibidores de Histona Desacetilases , Oxidiazóis , Desacetilase 6 de Histona/química , Hidrólise , Inibidores de Histona Desacetilases/farmacologia , Ácidos Hidroxâmicos/químicaRESUMO
Protein 4.1R, a member of the 4.1 family, functions as a bridge between cytoskeletal and plasma membrane proteins. It is expressed in T cells, where it binds to a linker for activation of T cell (LAT) family member 1 and inhibits its phosphorylation and downstream signaling events after T cell receptor triggering. The role of the 4.1R protein in cell activation through other immunoreceptors is not known. In this study, we used 4.1R-deficient (4.1R-KO) and 4.1R wild-type (WT) mice and explored the role of the 4.1R protein in the high-affinity IgE receptor (FcεRI) signaling in mast cells. We found that bone marrow mast cells (BMMCs) derived from 4.1R-KO mice showed normal growth in vitro and expressed FcεRI and c-KIT at levels comparable to WT cells. However, 4.1R-KO cells exhibited reduced antigen-induced degranulation, calcium response, and secretion of tumor necrosis factor-α. Chemotaxis toward antigen and stem cell factor (SCF) and spreading on fibronectin were also reduced in 4.1R-KO BMMCs, whereas prostaglandin E2-mediated chemotaxis was not affected. Antibody-induced aggregation of tetraspanin CD9 inhibited chemotaxis toward antigen in WT but not 4.1R-KO BMMCs, implying a CD9-4.1R protein cross-talk. Further studies documented that in the absence of 4.1R, antigen-mediated phosphorylation of FcεRI ß and γ subunits was not affected, but phosphorylation of SYK and subsequent signaling events such as phosphorylation of LAT1, phospholipase Cγ1, phosphatases (SHP1 and SHIP), MAP family kinases (p38, ERK, JNK), STAT5, CBL, and mTOR were reduced. Immunoprecipitation studies showed the presence of both LAT1 and LAT2 (LAT, family member 2) in 4.1R immunocomplexes. The positive regulatory role of 4.1R protein in FcεRI-triggered activation was supported by in vivo experiments in which 4.1R-KO mice showed the normal presence of mast cells in the ears and peritoneum, but exhibited impaired passive cutaneous anaphylaxis. The combined data indicate that the 4.1R protein functions as a positive regulator in the early activation events after FcεRI triggering in mast cells.
Assuntos
Quimiotaxia/imunologia , Mastócitos/imunologia , Proteínas dos Microfilamentos/imunologia , Receptores de IgE/imunologia , Animais , Degranulação Celular/imunologia , Mastócitos/metabolismo , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Proteínas dos Microfilamentos/metabolismo , Anafilaxia Cutânea Passiva/imunologia , Receptores de IgE/metabolismoRESUMO
The linear-ubiquitin chain assembly complex (LUBAC) modulates signalling via various immune receptors. In tumour necrosis factor (TNF) signalling, linear (also known as M1) ubiquitin enables full gene activation and prevents cell death. However, the mechanisms underlying cell death prevention remain ill-defined. Here, we show that LUBAC activity enables TBK1 and IKKε recruitment to and activation at the TNF receptor 1 signalling complex (TNFR1-SC). While exerting only limited effects on TNF-induced gene activation, TBK1 and IKKε are essential to prevent TNF-induced cell death. Mechanistically, TBK1 and IKKε phosphorylate the kinase RIPK1 in the TNFR1-SC, thereby preventing RIPK1-dependent cell death. This activity is essential in vivo, as it prevents TNF-induced lethal shock. Strikingly, NEMO (also known as IKKγ), which mostly, but not exclusively, binds the TNFR1-SC via M1 ubiquitin, mediates the recruitment of the adaptors TANK and NAP1 (also known as AZI2). TANK is constitutively associated with both TBK1 and IKKε, while NAP1 is associated with TBK1. We discovered a previously unrecognized cell death checkpoint that is mediated by TBK1 and IKKε, and uncovered an essential survival function for NEMO, whereby it enables the recruitment and activation of these non-canonical IKKs to prevent TNF-induced cell death.
Assuntos
Quinase I-kappa B/metabolismo , Proteínas Serina-Treonina Quinases/metabolismo , Proteína Serina-Treonina Quinases de Interação com Receptores/metabolismo , Fator de Necrose Tumoral alfa/farmacologia , Células A549 , Animais , Morte Celular/efeitos dos fármacos , Células Cultivadas , Células HeLa , Humanos , Camundongos Knockout , Fosforilação/efeitos dos fármacos , Receptores Tipo I de Fatores de Necrose Tumoral/metabolismo , Transdução de Sinais/efeitos dos fármacos , Ubiquitinação/efeitos dos fármacosRESUMO
Ubiquitination and deubiquitination are crucial for assembly and disassembly of signaling complexes. LUBAC-generated linear (M1) ubiquitin is important for signaling via various immune receptors. We show here that the deubiquitinases CYLD and A20, but not OTULIN, are recruited to the TNFR1- and NOD2-associated signaling complexes (TNF-RSC and NOD2-SC), at which they cooperate to limit gene activation. Whereas CYLD recruitment depends on its interaction with LUBAC, but not on LUBAC's M1-chain-forming capacity, A20 recruitment requires this activity. Intriguingly, CYLD and A20 exert opposing effects on M1 chain stability in the TNF-RSC and NOD2-SC. While CYLD cleaves M1 chains, and thereby sensitizes cells to TNF-induced death, A20 binding to them prevents their removal and, consequently, inhibits cell death. Thus, CYLD and A20 cooperatively restrict gene activation and regulate cell death via their respective activities on M1 chains. Hence, the interplay between LUBAC, M1-ubiquitin, CYLD, and A20 is central for physiological signaling through innate immune receptors.
Assuntos
Morte Celular/fisiologia , Ativação Transcricional/fisiologia , Complexos Ubiquitina-Proteína Ligase/metabolismo , Ubiquitina/metabolismo , Ubiquitinação/fisiologia , Linhagem Celular , Proteínas de Ligação a DNA/metabolismo , Enzima Desubiquitinante CYLD , Humanos , Imunoprecipitação , Peptídeos e Proteínas de Sinalização Intracelular/metabolismo , Proteínas Nucleares/metabolismo , Transdução de Sinais/fisiologia , Transdução Genética , Proteína 3 Induzida por Fator de Necrose Tumoral alfa , Proteínas Supressoras de Tumor/metabolismoRESUMO
Linear ubiquitination is crucial for innate and adaptive immunity. The linear ubiquitin chain assembly complex (LUBAC), consisting of HOIL-1, HOIP, and SHARPIN, is the only known ubiquitin ligase that generates linear ubiquitin linkages. HOIP is the catalytically active LUBAC component. Here, we show that both constitutive and Tie2-Cre-driven HOIP deletion lead to aberrant endothelial cell death, resulting in defective vascularization and embryonic lethality at midgestation. Ablation of tumor necrosis factor receptor 1 (TNFR1) prevents cell death, vascularization defects, and death at midgestation. HOIP-deficient cells are more sensitive to death induction by both tumor necrosis factor (TNF) and lymphotoxin-α (LT-α), and aberrant complex-II formation is responsible for sensitization to TNFR1-mediated cell death in the absence of HOIP. Finally, we show that HOIP's catalytic activity is necessary for preventing TNF-induced cell death. Hence, LUBAC and its linear-ubiquitin-forming activity are required for maintaining vascular integrity during embryogenesis by preventing TNFR1-mediated endothelial cell death.