Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
J Immunol ; 192(7): 3374-82, 2014 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-24591364

RESUMO

Neutrophils are the most abundant cell type in the immune system and play an important role in the innate immune response. Using a diverse range of mouse models with either defective dendritic cell (DC) development or conditional DC depletion, we provide in vivo evidence indicating that conventional DCs play an important role in the regulation of neutrophil homeostasis. Flk2, Flt3L, and Batf3 knockout mice, which have defects in DC development, have increased numbers of liver neutrophils in the steady state. Conversely, neutrophil frequency is reduced in DC-specific PTEN knockout mice, which have an expansion of CD8(+) and CD103(+) DCs. In chimeric CD11c-DTR mice, conventional DC depletion results in a systemic increase of neutrophils in peripheral organs in the absence of histological inflammation or an increase in proinflammatory cytokines. This effect is also present in splenectomized chimeric CD11c-DTR mice and is absent in chimeric mice with 50% normal bone marrow. In chimeric CD11c-DTR mice, diphtheria toxin treatment results in enhanced neutrophil trafficking from the bone marrow into circulation and increased neutrophil recruitment. Moreover, there is an increased expression of chemokines/cytokines involved in neutrophil homeostasis and reduced neutrophil apoptosis. These data underscore the role of the DC pool in regulating the neutrophil compartment in nonlymphoid organs.


Assuntos
Medula Óssea/imunologia , Células Dendríticas/imunologia , Homeostase/imunologia , Neutrófilos/imunologia , Animais , Apoptose/genética , Apoptose/imunologia , Fatores de Transcrição de Zíper de Leucina Básica/deficiência , Fatores de Transcrição de Zíper de Leucina Básica/genética , Fatores de Transcrição de Zíper de Leucina Básica/imunologia , Medula Óssea/metabolismo , Transplante de Medula Óssea , Antígeno CD11c/genética , Antígeno CD11c/imunologia , Antígeno CD11c/metabolismo , Sobrevivência Celular/genética , Sobrevivência Celular/imunologia , Citocinas/imunologia , Citocinas/metabolismo , Células Dendríticas/metabolismo , Feminino , Citometria de Fluxo , Fator de Crescimento Semelhante a EGF de Ligação à Heparina , Homeostase/genética , Mediadores da Inflamação/imunologia , Mediadores da Inflamação/metabolismo , Peptídeos e Proteínas de Sinalização Intercelular/genética , Peptídeos e Proteínas de Sinalização Intercelular/imunologia , Peptídeos e Proteínas de Sinalização Intercelular/metabolismo , Fígado/imunologia , Fígado/metabolismo , Proteínas de Membrana/deficiência , Proteínas de Membrana/genética , Proteínas de Membrana/imunologia , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Camundongos Transgênicos , Microscopia Confocal , Neutrófilos/metabolismo , PTEN Fosfo-Hidrolase/deficiência , PTEN Fosfo-Hidrolase/genética , PTEN Fosfo-Hidrolase/imunologia , Proteínas Repressoras/deficiência , Proteínas Repressoras/genética , Proteínas Repressoras/imunologia , Tirosina Quinase 3 Semelhante a fms/deficiência , Tirosina Quinase 3 Semelhante a fms/genética , Tirosina Quinase 3 Semelhante a fms/imunologia
2.
J Hepatol ; 63(1): 141-7, 2015 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-25678385

RESUMO

BACKGROUND & AIMS: Rapid induction of ß-PDGF receptor (ß-PDGFR) is a core feature of hepatic stellate cell activation, but its cellular impact in vivo is not well characterized. We explored the contribution of ß-PDGFR-mediated pathway activation to hepatic stellate cell responses in liver injury, fibrogenesis, and carcinogenesis in vivo using genetic models with divergent ß-PDGFR activity, and assessed its prognostic implications in human cirrhosis. METHODS: The impact of either loss or constitutive activation of ß-PDGFR in stellate cells on fibrosis was assessed following carbon tetrachloride (CCl4) or bile duct ligation. Hepatocarcinogenesis in fibrotic liver was tracked after a single dose of diethylnitrosamine (DEN) followed by repeated injections of CCl4. Genome-wide expression profiling was performed from isolated stellate cells that expressed or lacked ß-PDGFR to determine deregulated pathways and evaluate their association with prognostic gene signatures in human cirrhosis. RESULTS: Depletion of ß-PDGFR in hepatic stellate cells decreased injury and fibrosis in vivo, while its auto-activation accelerated fibrosis. However, there was no difference in development of DEN-induced pre-neoplastic foci. Genomic profiling revealed ERK, AKT, and NF-κB pathways and a subset of a previously identified 186-gene prognostic signature in hepatitis C virus (HCV)-related cirrhosis as downstream of ß-PDGFR in stellate cells. In the human cohort, the ß-PDGFR signature was not associated with HCC development, but was significantly associated with a poorer outcome in HCV cirrhosis. CONCLUSIONS: ß-PDGFR is a key mediator of hepatic injury and fibrogenesis in vivo and contributes to the poor prognosis of human cirrhosis, but not by increasing HCC development.


Assuntos
Células Estreladas do Fígado/metabolismo , Cirrose Hepática/metabolismo , Fígado/metabolismo , Receptor beta de Fator de Crescimento Derivado de Plaquetas/biossíntese , Animais , Proliferação de Células , Células Cultivadas , Doença Hepática Induzida por Substâncias e Drogas/complicações , Modelos Animais de Doenças , Células Estreladas do Fígado/patologia , Fígado/patologia , Cirrose Hepática/etiologia , Cirrose Hepática/patologia , Camundongos , Camundongos Transgênicos , Transdução de Sinais
3.
Hepatology ; 58(4): 1461-73, 2013 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-23553591

RESUMO

UNLABELLED: Although it is well established that hepatic macrophages play a crucial role in the development of liver fibrosis, the underlying mechanisms remain largely elusive. Moreover, it is not known whether other mononuclear phagocytes such as dendritic cells (DCs) contribute to hepatic stellate cell (HSC) activation and liver fibrosis. We show for the first time that hepatic macrophages enhance myofibroblast survival in a nuclear factor kappa B (NF-κB)-dependent manner and thereby promote liver fibrosis. Microarray and pathway analysis revealed no induction of HSC activation pathways by hepatic macrophages but a profound activation of the NF-κB pathway in HSCs. Conversely, depletion of mononuclear phagocytes during fibrogenesis in vivo resulted in suppressed NF-κB activation in HSCs. Macrophage-induced activation of NF-κB in HSCs in vitro and in vivo was mediated by interleukin (IL)-1 and tumor necrosis factor (TNF). Notably, IL-1 and TNF did not promote HSC activation but promoted survival of activated HSCs in vitro and in vivo and thereby increased liver fibrosis, as demonstrated by neutralization in coculture experiments and genetic ablation of IL-1 and TNF receptor in vivo. Coculture and in vivo ablation experiments revealed only a minor contribution to NF-κB activation in HSCs by DCs, and no contribution of DCs to liver fibrosis development, respectively. CONCLUSION: Promotion of NF-κB-dependent myofibroblast survival by macrophages but not DCs provides a novel link between inflammation and fibrosis.


Assuntos
Células Dendríticas/patologia , Células Estreladas do Fígado/patologia , Cirrose Hepática/patologia , Cirrose Hepática/fisiopatologia , Fígado/patologia , Macrófagos/patologia , Animais , Sobrevivência Celular/fisiologia , Técnicas de Cocultura , Modelos Animais de Doenças , Deleção de Genes , Interleucina-1/deficiência , Interleucina-1/genética , Interleucina-1/fisiologia , Masculino , Camundongos , Camundongos Endogâmicos BALB C , Camundongos Endogâmicos C57BL , NF-kappa B/fisiologia , Receptores do Fator de Necrose Tumoral/deficiência , Receptores do Fator de Necrose Tumoral/genética , Receptores do Fator de Necrose Tumoral/fisiologia , Transdução de Sinais/fisiologia
4.
Toxicol Appl Pharmacol ; 279(1): 43-52, 2014 Aug 15.
Artigo em Inglês | MEDLINE | ID: mdl-24832492

RESUMO

The lipid peroxidation end-product 4-hydroxynonenal (4-HNE) is generated in tissues during oxidative stress. As a reactive aldehyde, it forms Michael adducts with nucleophiles, a process that disrupts cellular functioning. Liver, lung and brain are highly sensitive to xenobiotic-induced oxidative stress and readily generate 4-HNE. In the present studies, we compared 4-HNE metabolism in these tissues, a process that protects against tissue injury. 4-HNE was degraded slowly in total homogenates and S9 fractions of mouse liver, lung and brain. In liver, but not lung or brain, NAD(P)+ and NAD(P)H markedly stimulated 4-HNE metabolism. Similar results were observed in rat S9 fractions from these tissues. In liver, lung and brain S9 fractions, 4-HNE formed protein adducts. When NADH was used to stimulate 4-HNE metabolism, the formation of protein adducts was suppressed in liver, but not lung or brain. In both mouse and rat tissues, 4-HNE was also metabolized by glutathione S-transferases. The greatest activity was noted in livers of mice and in lungs of rats; relatively low glutathione S-transferase activity was detected in brain. In mouse hepatocytes, 4-HNE was rapidly taken up and metabolized. Simultaneously, 4-HNE-protein adducts were formed, suggesting that 4-HNE metabolism in intact cells does not prevent protein modifications. These data demonstrate that, in contrast to liver, lung and brain have a limited capacity to metabolize 4-HNE. The persistence of 4-HNE in these tissues may increase the likelihood of tissue injury during oxidative stress.


Assuntos
Aldeídos/metabolismo , Encéfalo/metabolismo , Fígado/metabolismo , Pulmão/metabolismo , Aldeídos/antagonistas & inibidores , Animais , Anticorpos Bloqueadores/farmacologia , Western Blotting , Encéfalo/efeitos dos fármacos , Encéfalo/enzimologia , Inibidores Enzimáticos/farmacologia , Glutationa Transferase/antagonistas & inibidores , Glutationa Transferase/metabolismo , Hepatócitos/efeitos dos fármacos , Hepatócitos/metabolismo , Cinética , Fígado/efeitos dos fármacos , Fígado/enzimologia , Pulmão/efeitos dos fármacos , Pulmão/enzimologia , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Ratos , Ratos Long-Evans , Especificidade da Espécie , Frações Subcelulares/enzimologia , Frações Subcelulares/metabolismo
5.
Chem Res Toxicol ; 27(5): 882-94, 2014 May 19.
Artigo em Inglês | MEDLINE | ID: mdl-24661219

RESUMO

Acetaminophen (APAP) is metabolized in the liver to N-acetyl-p-benzoquinone imine (NAPQI), an electrophilic metabolite known to bind liver proteins resulting in hepatotoxicity. Mammalian thioredoxin reductase (TrxR) is a cellular antioxidant containing selenocysteine (Sec) in its C-terminal redox center, a highly accessible target for electrophilic modification. In the present study, we determined if NAPQI targets TrxR. Hepatotoxicity induced by APAP treatment of mice (300 mg/kg, i.p.) was associated with a marked inhibition of both cytosolic TrxR1 and mitochondrial TrxR2 activity. Maximal inhibition was detected at 1 and 6 h post-APAP for TrxR1 and TrxR2, respectively. In purified rat liver TrxR1, enzyme inactivation was correlated with the metabolic activation of APAP by cytochrome P450, indicating that enzyme inhibition was due to APAP-reactive metabolites. NAPQI was also found to inhibit TrxR1. NADPH-reduced TrxR1 was significantly more sensitive to NAPQI (IC50 = 0.023 µM) than the oxidized enzyme (IC50 = 1.0 µM) or a human TrxR1 Sec498Cys mutant enzyme (IC50 = 17 µM), indicating that cysteine and selenocysteine residues in the redox motifs of TrxR are critical for enzyme inactivation. This is supported by our findings that alkylation of reduced TrxR with biotin-conjugated iodoacetamide, which selectively reacts with selenol or thiol groups on proteins, was inhibited by NAPQI. LC-MS/MS analysis confirmed that NAPQI modified cysteine 59, cysteine 497, and selenocysteine 498 residues in the redox centers of TrxR, resulting in enzyme inhibition. In addition to disulfide reduction, TrxR is also known to mediate chemical redox cycling. We found that menadione redox cycling by TrxR was markedly less sensitive to NAPQI than disulfide reduction, suggesting that TrxR mediates these reactions via distinct mechanisms. These data demonstrate that APAP-reactive metabolites target TrxR, suggesting an additional mechanism by which APAP induces oxidative stress and hepatotoxicity.


Assuntos
Acetaminofen/metabolismo , Analgésicos não Narcóticos/metabolismo , Benzoquinonas/toxicidade , Iminas/toxicidade , Fígado/enzimologia , Tiorredoxina Dissulfeto Redutase/antagonistas & inibidores , Tiorredoxina Dissulfeto Redutase/metabolismo , Sequência de Aminoácidos/efeitos dos fármacos , Animais , Benzoquinonas/metabolismo , Humanos , Iminas/metabolismo , Fígado/efeitos dos fármacos , Fígado/patologia , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Modelos Moleculares , Dados de Sequência Molecular , Oxirredução , Ratos , Selenocisteína/metabolismo , Tiorredoxina Dissulfeto Redutase/química , Tiorredoxinas/metabolismo
6.
J Immunol ; 189(12): 5934-41, 2012 Dec 15.
Artigo em Inglês | MEDLINE | ID: mdl-23175698

RESUMO

Inflammatory macrophages have been implicated in hepatotoxicity induced by the analgesic acetaminophen (APAP). In these studies, we characterized the phenotype of macrophages accumulating in the liver following APAP intoxication and evaluated the role of galectin-3 (Gal-3) in macrophage activation. Administration of APAP (300 mg/kg, i.p.) to wild-type mice resulted in the appearance of two distinct subpopulations of CD11b(+) cells in the liver, which expressed high or low levels of the monocyte/macrophage activation marker Ly6C. Whereas CD11b(+)/Ly6C(hi) macrophages exhibited a classically activated proinflammatory phenotype characterized by increased expression of TNF-α, inducible NO synthase, and CCR2, CD11b(+)/Ly6C(lo) macrophages were alternatively activated, expressing high levels of the anti-inflammatory cytokine IL-10. APAP intoxication was also associated with an accumulation of Gal-3(+) macrophages in the liver; the majority of these cells were Ly6C(hi). APAP-induced increases in CD11b(+)/Ly6C(hi) macrophages were significantly reduced in Gal-3(-/-) mice. This reduction was evident 72 h post APAP and was correlated with decreased expression of the classical macrophage activation markers, inducible NO synthase, IL-12, and TNF-α, as well as the proinflammatory chemokines CCL2 and CCL3, and chemokine receptors CCR1 and CCR2. Conversely, numbers of CD11b(+)/Ly6C(lo) macrophages increased in livers of APAP-treated Gal-3(-/-) mice; this was associated with increased expression of the alternative macrophage activation markers Ym1 and Fizz1, increased liver repair, and reduced hepatotoxicity. These data demonstrate that both classically and alternatively activated macrophages accumulate in the liver following APAP intoxication; moreover, Gal-3 plays a role in promoting a persistent proinflammatory macrophage phenotype.


Assuntos
Acetaminofen/toxicidade , Galectina 3/fisiologia , Mediadores da Inflamação/toxicidade , Fígado/imunologia , Fígado/patologia , Ativação de Macrófagos/imunologia , Acetaminofen/administração & dosagem , Analgésicos/administração & dosagem , Analgésicos/toxicidade , Animais , Galectina 3/deficiência , Galectina 3/genética , Imunofenotipagem , Fígado/efeitos dos fármacos , Ativação de Macrófagos/efeitos dos fármacos , Ativação de Macrófagos/genética , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Distribuição Aleatória
7.
Toxicol Appl Pharmacol ; 253(3): 170-7, 2011 Jun 15.
Artigo em Inglês | MEDLINE | ID: mdl-21513726

RESUMO

Toxic doses of acetaminophen (AA) cause hepatocellular necrosis. Evidence suggests that activated macrophages contribute to the pathogenic process; however, the factors that activate these cells are unknown. In these studies, we assessed the role of mediators released from AA-injured hepatocytes in macrophage activation. Treatment of macrophages with conditioned medium (CM) collected 24hr after treatment of mouse hepatocytes with 5mM AA (CM-AA) resulted in increased production of reactive oxygen species (ROS). Macrophage expression of heme oxygenase-1 (HO-1) and catalase mRNA was also upregulated by CM-AA, as well as cyclooxygenase (COX)-2 and 12/15-lipoxygenase (LOX). CM-AA also upregulated expression of the proinflammatory chemokines, MIP-1α and MIP-2. The effects of CM-AA on expression of COX-2, MIP-1α and MIP-2 were inhibited by blockade of p44/42 MAP kinase, suggesting a biochemical mechanism mediating macrophage activation. Hepatocytes injured by AA were found to release HMGB1, a potent macrophage activator. This was inhibited by pretreatment of hepatocytes with ethyl pyruvate (EP), which blocks HMGB1 release. EP also blocked CM-AA induced ROS production and antioxidant expression, and reduced expression of COX-2, but not MIP-1α or MIP-2. These findings suggest that HMGB1 released by AA-injured hepatocytes contributes to macrophage activation. This is supported by our observation that expression of the HMGB1 receptor RAGE is upregulated in macrophages in response to CM-AA. These data indicate that AA-injured hepatocytes contribute to the inflammatory environment in the liver through the release of mediators such as HMGB1. Blocking HMGB1/RAGE may be a useful approach to limiting classical macrophage activation and AA-induced hepatotoxicity.


Assuntos
Acetaminofen/toxicidade , Analgésicos não Narcóticos/toxicidade , Proteína HMGB1/fisiologia , Hepatócitos/efeitos dos fármacos , Ativação de Macrófagos/fisiologia , Animais , Quimiocina CCL2/fisiologia , Ciclo-Oxigenase 2/fisiologia , MAP Quinases Reguladas por Sinal Extracelular/fisiologia , Heme Oxigenase-1/fisiologia , Hepatócitos/metabolismo , Masculino , Proteínas de Membrana/fisiologia , Camundongos , Camundongos Endogâmicos C57BL
8.
Toxicol Sci ; 127(2): 609-19, 2012 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-22461450

RESUMO

Galectin-3 (Gal-3) is a ß-galactoside-binding lectin implicated in the regulation of macrophage activation and inflammatory mediator production. In the present studies, we analyzed the role of Gal-3 in liver inflammation and injury induced by acetaminophen (APAP). Treatment of wild-type (WT) mice with APAP (300 mg/kg, ip) resulted in centrilobular hepatic necrosis and increases in serum transaminases. This was associated with increased hepatic expression of Gal-3 messenger RNA and protein. Immunohistochemical analysis showed that Gal-3 was predominantly expressed by mononuclear cells infiltrating into necrotic areas. APAP-induced hepatotoxicity was reduced in Gal-3-deficient mice. This was most pronounced at 48-72 h post-APAP and correlated with decreases in APAP-induced expression of 24p3, a marker of inflammation and oxidative stress. These effects were not due to alterations in APAP metabolism or hepatic glutathione levels. The proinflammatory proteins, inducible nitric oxide synthase (iNOS), interleukin (IL)-1ß, macrophage inflammatory protein (MIP)-2, matrix metalloproteinase (MMP)-9, and MIP-3α, as well as the Gal-3 receptor (CD98), were upregulated in livers of WT mice after APAP intoxication. Loss of Gal-3 resulted in a significant reduction in expression of iNOS, MMP-9, MIP-3α, and CD98, with no effects on IL-1ß. Whereas APAP-induced increases in MIP-2 were augmented at 6 h in Gal-3(-/-) mice when compared with WT mice, at 48 and 72 h, they were suppressed. Tumor necrosis factor receptor-1 (TNFR1) was also upregulated after APAP, a response dependent on Gal-3. Moreover, exaggerated APAP hepatotoxicity in mice lacking TNFR1 was associated with increased Gal-3 expression. These data demonstrate that Gal-3 is important in promoting inflammation and injury in the liver following APAP intoxication.


Assuntos
Acetaminofen/toxicidade , Analgésicos não Narcóticos/toxicidade , Doença Hepática Induzida por Substâncias e Drogas/etiologia , Galectina 3/metabolismo , Mediadores da Inflamação/metabolismo , Fígado/efeitos dos fármacos , Acetaminofen/metabolismo , Analgésicos não Narcóticos/metabolismo , Animais , Biotransformação , Doença Hepática Induzida por Substâncias e Drogas/genética , Doença Hepática Induzida por Substâncias e Drogas/metabolismo , Doença Hepática Induzida por Substâncias e Drogas/patologia , Citocromo P-450 CYP2E1/metabolismo , Galectina 3/deficiência , Galectina 3/genética , Regulação da Expressão Gênica , Glutationa/metabolismo , Fígado/metabolismo , Fígado/patologia , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Necrose , RNA Mensageiro/metabolismo , Receptores Tipo I de Fatores de Necrose Tumoral/deficiência , Receptores Tipo I de Fatores de Necrose Tumoral/genética , Fatores de Tempo
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa