RESUMO
The influence of pumpkin seed roasting conditions (110-140 °C) and screw-pressing on the formation of previously undescribed Δ7-phytosterol oxidation products and tocopherylquinone adducts with nucleophilic phosphatidylethanolamine species was investigated. The roasting process of pumpkin seed paste at a temperature above 120 °C for 30 min considerably enhanced the formation of Δ7-oxysterols. Targeted analysis [electron impact mass spectrometry (MS), 1D-nuclear magnetic resonance] led to the identification of five novel markers of pumpkin paste roasting, among which (3ß,5α,22E,24S)-stigmasta-7,22-dien-6-one-3-ol (6-oxo-α-spinasterol), stereoisomers of (3ß,5α,22E)-7,8-epoxystigmast-22-en-3-ol (7,8-epoxy-α-spinasterol), and (3ß,5α)-22,23-epoxystigmast-7-en-3-ol (7,8-epoxy-α-spinasterol) were reported in edible oils for the first time. Simulated culinary processing provided novel stereoisomers of (3ß,5α,22E)-stigmasta-7,22-dien-3,6-diol, unusual (3ß,5α,22E)-stigmasta-7,22-dien-6,15-dione-3-ol, and (5α,22E)-stigmasta-7,22-dien-3-one accompanied by minor stereoisomers of (3ß,5α)-7,8;22,23-diepoxystigmastan-3-ol. Moreover, a clear relationship between the pumpkin seed oil stability index and synergistic effect of glycerophospholipids with present tocochromanols was found. High-resolution atmospheric pressure chemical ionization-MS experiments clearly demonstrated the formation of various γ-tocopherylquinone adducts with primary amines, namely, octylamine. The mitigation strategy of potentially detrimental oxysterols from pumpkin seed oil included optimization of processing parameters while maintaining the formation of desirable sensory-active compounds.
Assuntos
Cucurbita , Oxisteróis , Fitosteróis , Aminas , Parafusos Ósseos , Fosfatidiletanolaminas , Óleos de Plantas/química , Temperatura , Vitamina E/análogos & derivadosRESUMO
The aim of the bioassay-guided fractionation was the selection of the most potent group of compounds responsible for the protection of sunflower bee pollen grains. Synthesis of prospective antifungal polyamides of hydroxycinnamic acids was based on previous structural elucidation of ethanol soluble fraction by 1H,1H-PFG-COSY, 1H,13C-HSQC, FT-IR, FT-Raman, and LC-MS experiments. The main compounds found were tri- p-coumaroylspermidines accompanied by other HCAA of spermidine and putrescine. Several model HCAA derivatives were prepared to test their antifungal activity against widespread spoilage fungi ( A. niger 42 CCM 8189, F. culmorum DMF 0103, and P. verrucosum DMF 0023). A. niger CCM 8189 and F. culmorum DMF 0103 exhibited higher resistance to the antifungal effects of hydroxycinnamic acid amides, whereas P. verrucosum DMF 0023 was the most sensitive strain. It has been discovered the effect of HCAA polarity on the role of secondary metabolites in the microbial protection of pollen grains. The combination of bioassay-guided fractionation, structural elucidation, selection of prospective compounds, and their synthesis to determine their antifungal properties could be considered as an original approach.