RESUMO
In the version of this article initially published, a source of funding (Deutsche José Carreras Leukämie-Stiftung e.V. (DJCLS R12/29 to C.K. and I.P.)) was not included in the Acknowledgments section. The correct statement is as follows: "Supported by Deutsche Forschungsgemeinschaft, (SFB900/B8 to C.K. and I.P.; and PR727/4-1 to I.P.), Deutsche José Carreras Leukämie-Stiftung e.V. (DJCLS R12/29 to C.K. and I.P.) and the German Federal Ministry of Education and Research (01EO1302 to C.S.-F., C.K. and I.P.)." The error has been corrected in the HTML and PDF versions of the article.
RESUMO
To investigate how the human γδ T cell pool is shaped during ontogeny and how it is regenerated after transplantation of hematopoietic stem cells (HSCs), we applied an RNA-based next-generation sequencing approach to monitor the dynamics of the repertoires of γδ T cell antigen receptors (TCRs) before and after transplantation in a prospective cohort study. We found that repertoires of rearranged genes encoding γδ TCRs (TRG and TRD) in the peripheral blood of healthy adults were stable over time. Although a large fraction of human TRG repertoires consisted of public sequences, the TRD repertoires were private. In patients undergoing HSC transplantation, γδ T cells were quickly reconstituted; however, they had profoundly altered TCR repertoires. Notably, the clonal proliferation of individual virus-reactive γδ TCR sequences in patients with reactivation of cytomegalovirus revealed strong evidence for adaptive anti-viral γδ T cell immune responses.
Assuntos
Evolução Clonal , Infecções por Citomegalovirus/imunologia , Transplante de Células-Tronco Hematopoéticas , Receptores de Antígenos de Linfócitos T gama-delta/genética , Receptores de Antígenos de Linfócitos T gama-delta/metabolismo , Subpopulações de Linfócitos T/imunologia , Subpopulações de Linfócitos T/metabolismo , Evolução Clonal/genética , Evolução Clonal/imunologia , Infecções por Citomegalovirus/genética , Infecções por Citomegalovirus/virologia , Rearranjo Gênico do Linfócito T , Sobrevivência de Enxerto , Humanos , Ativação Linfocitária/genética , Ativação Linfocitária/imunologia , Transplante HomólogoRESUMO
Identification of immune phenotypes linked to durable graft-versus-leukemia (GVL) response following donor lymphocyte infusions (DLI) is of high clinical relevance. In this prospective observational study of 13 AML relapse patients receiving therapeutic DLI, we longitudinally investigated changes in differentiation stages and exhaustion markers of T cell subsets using cluster analysis of 30-color spectral flow cytometry during 24 months follow-up. DLI cell products and patient samples after DLI were analyzed and correlated to the clinical outcome. Analysis of DLI cell products revealed heterogeneity in the proportions of naïve and antigen experienced T cells. Cell products containing lower levels of effector memory (eff/m) cells and higher amounts of naïve CD4+ and CD8+ T cells were associated with long-term remission. Furthermore, investigation of patient blood samples early after DLI showed that patients relapsing during the study period, had higher levels of CD4+ eff/m T cells and expressed a mosaic of surface molecules implying an exhausted functional state. Of note, this observation preceded the clinical diagnosis of relapse by five months. On the other hand, patients with continuous remission retained lower levels of exhausted CD4+ eff/m T cells more than four months post DLI. Moreover, lower frequencies of exhausted CD8+ eff/m T cells as well as higher amounts of CD4+temra CD45RO+ T cells were present in this group. These results imply the formation of functional long-term memory pool of T cells. Finally, unbiased sample analysis showed that DLI cell products with low levels of eff/m cells both in CD4+ and CD8+ T cell subpopulations associate with a lower relapse incidence. Additionally, competing risk analysis of patient samples taken early after DLI revealed that patients with high amounts of exhausted CD4+ eff/m T cells in their blood exhibited significantly higher rates of relapse. In conclusion, differentially activated T cell clusters, both in the DLI product and in patients post infusion, were associated with AML relapse after DLI. Our study suggests that differences in DLI cell product composition might influence GVL. In-depth monitoring of T cell dynamics post DLI might increase safety and efficacy of this immunotherapy, while further studies are needed to assess the functionality of T cells found in the DLI.
Assuntos
Doença Enxerto-Hospedeiro , Leucemia Mieloide Aguda , Humanos , Transfusão de Linfócitos/métodos , Transplante Homólogo/efeitos adversos , Linfócitos T CD8-Positivos , Citometria de Fluxo , Subpopulações de Linfócitos T , Recidiva , Leucemia Mieloide Aguda/terapia , Análise por ConglomeradosRESUMO
OBJECTIVE: Cutaneous manifestations are the most common clinical features of lupus erythematosus (LE). The aim of this study was to analyze differences in the inflammatory response of keratinocytes from patients with cutaneous LE (CLE) compared with healthy controls. METHODS: Keratinocytes from LE patients and controls were cultured from epidermal stem cells of the hair follicle of anagen head hairs. Functional responses of keratinocytes to cytokine stimulation were determined by flow cytometry and enzyme-linked immunosorbent assay. Biopsy samples of lesional skin were analyzed by immunohistochemistry. RESULTS: Keratinocytes from CLE patients expressed higher levels of IL-18 receptor on their cell surface in response to tumor necrosis factor alpha (TNFalpha) or interferon-gamma stimulation. In response to IL-18 stimulation, these cells produced large amounts of TNFalpha. Of note, in the presence of IL-18, CLE keratinocytes failed to express IL-12. IL-12 has previously been shown to protect keratinocytes from ultraviolet irradiation-induced apoptosis. Keratinocytes from LE patients were more prone to die upon exposure to IL-18, and this increased apoptosis was abrogated by blockade of endogenously produced TNFalpha as well as by the addition of exogenous IL-12. IL-18 was highly expressed in biopsy samples of lesional skin from CLE patients. CONCLUSION: Our results demonstrate an intrinsic difference in the inflammatory response of keratinocytes and indicate an autocrine feedback loop involving TNFalpha, IL-18, and IL-12 family members. Our results suggest that IL-18 may occupy an important position in the cytokine hierarchy in CLE, indicating the potential benefit of a local agent that blocks IL-18 activity in the treatment of the manifestations of CLE.