Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros

Base de dados
País como assunto
Tipo de documento
Intervalo de ano de publicação
1.
J Chem Educ ; 97(8): 2231-2237, 2020 Aug 11.
Artigo em Inglês | MEDLINE | ID: mdl-32801390

RESUMO

While Li-ion batteries are abundant in everyday life from smart phones to electric vehicles, there are a lack of educational resources that can explain their operation, particularly their rechargeable nature. It is also important that any such resource can be understood by a wide range of age groups and backgrounds. To this end, we describe how modified tower block games sets, such as Jenga, can be used to explain the operation of Li-ion batteries. The sets can also be utilized to explain more advanced topics such as battery degradation and challenges with charging these batteries at high rates. In order to make the resource more inclusive, we also illustrate modifications to prepare tactile tower block sets, so that the activity is also suitable for blind and partially sighted students. Feedback from a range of groups supports the conclusion that the tower block sets are a useful tool to explain Li-ion battery concepts.

2.
Dalton Trans ; 52(37): 13110-13118, 2023 Sep 26.
Artigo em Inglês | MEDLINE | ID: mdl-37675851

RESUMO

Niobium based anodes are gaining increasing popularity for application in high-power lithium-ion batteries, due to their high theoretical capacities, inherent safety at high current densities, and long-term stability. Here, we report the discovery and characterisation of a new Wadsley Roth niobate system, Nb7Ti1.5Mo1.5O25, showing that it is isostructural with known systems: Nb9PO25 and Nb9VO25. To evaluate the material's electrochemical performance, including performance at high current densities (for potential high power applications), and long-term stability, Li half-coin cells were prepared. The material showed an initial capacity of 268(9) mA h g-1 at 0.01 A g-1 (voltage range of 2.5-1.0 V). However, in subsequent cycles, some of this initial capacity is lost, which is attributed to Li trapping associated with the presence of reducible MoO4 units, similar to the situation observed for isostructural Nb9VO25. After this initial irreversible capacity loss, the material showed good performance at high current density rates, such that at 2 A g-1 and 4 A g-1 respective capacities of 132(10) mA h g-1 and 115(14) mA g-1 were delivered. Moreover, the material showed respectable capacity retention (97%) after being cycled for 100 cycles at 0.2 A g-1. In order to identify the different Nb, Ti, Mo redox couples involved in this system, a Ta analogue was also synthesized (Ta7Ti1.5Mo1.5O25) and the electrochemical performance for this phase is also reported. This phase shows a lower initial capacity at 0.01 A g-1 (140(3) mA h g-1) than the Nb analogue in the same voltage range, which can be increased (225 mA h g-1) if a lower cutoff voltage (0.5 V) is applied. The capacity retention for this Ta system after 100 cycles at 0.2 A g-1 is similar to the Nb analogue (97%). Further work has explored whether the Nb-Ti-Mo contents could be varied, and these results showed that single phase Nb10-2xTixMoxO25 samples could be prepared for 1.5 ≤ x ≤ 1.75, and electrochemical testing results for the x = 1.75 endmember are also reported. Overall, this research highlights the synthesis and electrochemical characterisation of two new Wadsley Roth phases, and further highlights the challenges associated with the presence of reducible cations in tetrahedral sites in such structures with respect to minimising initial irreversible capacity loss.

3.
Dalton Trans ; 50(9): 3315-3323, 2021 Mar 09.
Artigo em Inglês | MEDLINE | ID: mdl-33595035

RESUMO

Solar perovskites have received phenomenal attention and success over the past decade, due to their high power conversion efficiencies (PCE), ease of fabrication and low cost which has enabled the prospect of them being a real commercial contender to the traditional silicon technology. In one of the several developments on the archetypal MAPbI3 perovskite absorber layer, FAPbI3 was found to obtain a higher PCE, likely due to its more optimum band gap, with doping strategies focusing on the inclusion of MA+/Cs+ cations to avoid the unfavourable phase transformation to a photoinactive phase. To better understand the phase change from the photoactive cubic (Pm3[combining macron]m) black (α) phase to the unwanted photoinactive (P63/mmc) yellow (δ) phase, we make use of variable temperature Raman spectroscopy to probe the molecular species and its relationship to the inorganic framework. We show for the first time there to be no Raman active modes for the α phase up to 4000 cm-1, which can be correlated to the Pm3[combining macron]m cubic symmetry of that phase. Our detailed studies suggest that previous reports of the observation of Raman peaks for this phase are likely associated with degradation reactions from the localised laser exposure and the formation of Raman active lead oxide. In addition, we have identified water as a contributing factor to the transformation, and observed a corresponding signal in the Raman spectra, although confirmation of its exact role still remains inconclusive.

SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa