Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Bioinformatics ; 35(18): 3541-3543, 2019 09 15.
Artigo em Inglês | MEDLINE | ID: mdl-30726866

RESUMO

SUMMARY: Riboswitches are cis-regulatory non-coding genomic segments that control the expression of downstream genes by undergoing conformational change upon ligand binding. We present a comprehensive database of prokaryotic riboswitches that allows the user to search for riboswitches using multiple criteria, extract information about riboswitch location and gene/operon it regulates. RiboD provides a very useful resource that can be utilized for the better understanding of riboswitch-based gene regulation in bacteria and archaea. AVAILABILITY AND IMPLEMENTATION: RiboD can be freely accessed on the web at http://ribod.iiserkol.ac.in/.


Assuntos
Riboswitch , Archaea , Bactérias , Bases de Dados Factuais , Óperon , Software
2.
Nucleic Acids Res ; 44(W1): W308-14, 2016 07 08.
Artigo em Inglês | MEDLINE | ID: mdl-27185893

RESUMO

In recent years, new methods for computational RNA design have been developed and applied to various problems in synthetic biology and nanotechnology. Lately, there is considerable interest in incorporating essential biological information when solving the inverse RNA folding problem. Correspondingly, RNAfbinv aims at including biologically meaningful constraints and is the only program to-date that performs a fragment-based design of RNA sequences. In doing so it allows the design of sequences that do not necessarily exactly fold into the target, as long as the overall coarse-grained tree graph shape is preserved. Augmented by the weighted sampling algorithm of incaRNAtion, our web server called incaRNAfbinv implements the method devised in RNAfbinv and offers an interactive environment for the inverse folding of RNA using a fragment-based design approach. It takes as input: a target RNA secondary structure; optional sequence and motif constraints; optional target minimum free energy, neutrality and GC content. In addition to the design of synthetic regulatory sequences, it can be used as a pre-processing step for the detection of novel natural occurring RNAs. The two complementary methodologies RNAfbinv and incaRNAtion are merged together and fully implemented in our web server incaRNAfbinv, available at http://www.cs.bgu.ac.il/incaRNAfbinv.


Assuntos
Conformação de Ácido Nucleico , Dobramento de RNA , RNA/química , Software , Algoritmos , Composição de Bases , Pareamento de Bases , Sequência de Bases , Gráficos por Computador , Internet , Mutação , RNA/genética , Análise de Sequência de RNA , Termodinâmica
3.
Nucleic Acids Res ; 43(W1): W507-12, 2015 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-25940619

RESUMO

Searching for RNA sequence-structure patterns is becoming an essential tool for RNA practitioners. Novel discoveries of regulatory non-coding RNAs in targeted organisms and the motivation to find them across a wide range of organisms have prompted the use of computational RNA pattern matching as an enhancement to sequence similarity. State-of-the-art programs differ by the flexibility of patterns allowed as queries and by their simplicity of use. In particular-no existing method is available as a user-friendly web server. A general program that searches for RNA sequence-structure patterns is RNA Structator. However, it is not available as a web server and does not provide the option to allow flexible gap pattern representation with an upper bound of the gap length being specified at any position in the sequence. Here, we introduce RNAPattMatch, a web-based application that is user friendly and makes sequence/structure RNA queries accessible to practitioners of various background and proficiency. It also extends RNA Structator and allows a more flexible variable gaps representation, in addition to analysis of results using energy minimization methods. RNAPattMatch service is available at http://www.cs.bgu.ac.il/rnapattmatch. A standalone version of the search tool is also available to download at the site.


Assuntos
RNA/química , Análise de Sequência de RNA/métodos , Software , Internet , Conformação de Ácido Nucleico , Motivos de Nucleotídeos
4.
PLoS Negl Trop Dis ; 13(3): e0007237, 2019 03.
Artigo em Inglês | MEDLINE | ID: mdl-30870425

RESUMO

Leishmania parasites lack pathways for de novo purine biosynthesis. The depletion of purines induces differentiation into virulent metacyclic forms. In vitro, the parasites can survive prolonged periods of purine withdrawal changing their morphology to long and slender cells with an extended flagellum, and decreasing their translation rates. Reduced translation leads to the appearance of discrete granules that contain LeishIF4E-3, one of the six eIF4E paralogs encoded by the Leishmania genome. We hypothesize that each is responsible for a different function during the life cycle. LeishIF4E-3 is a weak cap-binding protein paralog, but its involvement in translation under normal conditions cannot be excluded. However, in response to nutritional stress, LeishIF4E-3 concentrates in specific cytoplasmic granules. LeishIF4E-3 granulation can be induced by the independent elimination of purines, amino acids and glucose. As these granules contain mature mRNAs, we propose that these bodies store inactive transcripts until recovery from stress occurs. In attempt to examine the content of the nutritional stress-induced granules, they were concentrated over sucrose gradients and further pulled-down by targeting in vivo tagged LeishIF4E-3. Proteomic analysis highlighted granule enrichment with multiple ribosomal proteins, suggesting that ribosome particles are abundant in these foci, as expected in case of translation inhibition. RNA-binding proteins, RNA helicases and metabolic enzymes were also enriched in the granules, whereas no degradation enzymes or P-body markers were detected. The starvation-induced LeishIF4E-3-containing granules, therefore, appear to store stalled ribosomes and ribosomal subunits, along with their associated mRNAs. Following nutritional stress, LeishIF4E-3 becomes phosphorylated at position S75, located in its less-conserved N-terminal extension. The ability of the S75A mutant to form granules was reduced, indicating that cellular signaling regulates LeishIF4E-3 function.


Assuntos
Grânulos Citoplasmáticos/metabolismo , Fator de Iniciação 4E em Eucariotos/metabolismo , Leishmania/fisiologia , RNA Mensageiro/metabolismo , Ribossomos/metabolismo , Estresse Fisiológico , Aminoácidos/metabolismo , Grânulos Citoplasmáticos/química , Glucose/metabolismo , Leishmania/metabolismo , Transporte Proteico , Proteoma/análise , Proteínas de Protozoários/análise , Purinas/metabolismo
5.
mSphere ; 4(5)2019 09 04.
Artigo em Inglês | MEDLINE | ID: mdl-31484740

RESUMO

The genomes of Leishmania and trypanosomes encode six paralogs of the eIF4E cap-binding protein, known in other eukaryotes to anchor the translation initiation complex. In line with the heteroxenous nature of these parasites, the different LeishIF4E paralogs vary in their biophysical features and their biological behavior. We therefore hypothesize that each has a specialized function, not limited to protein synthesis. Of the six paralogs, LeishIF4E-3 has a weak cap-binding activity. It participates in the assembly of granules that store inactive transcripts and ribosomal proteins during nutritional stress that is experienced in the sand fly. We investigated the role of LeishIF4E-3 in Leishmania mexicana promastigotes using the CRISPR-Cas9 system. We deleted one of the two LeishIF4E-3 alleles, generating a heterologous deletion mutant with reduced LeishIF4E-3 expression. The mutant showed a decline in de novo protein synthesis and growth kinetics, altered morphology, and impaired infectivity. The mutant cells were rounded and failed to transform into the nectomonad-like form, in response to purine starvation. Furthermore, the infectivity of macrophage cells by the LeishIF4E-3(+/-) mutant was severely reduced. These phenotypic features were not observed in the addback cells, in which expression of LeishIF4E-3 was restored. The observed phenotypic changes correlated with the profile of transcripts associated with LeishIF4E-3. These were enriched for cytoskeleton- and flagellum-encoding genes, along with genes for RNA binding proteins. Our data illustrate the importance of LeishIF4E-3 in translation and in the parasite virulence.IMPORTANCELeishmania species are the causative agents of a spectrum of diseases. Available drug treatment is toxic and expensive, with drug resistance a growing concern. Leishmania parasites migrate between transmitting sand flies and mammalian hosts, experiencing unfavorable extreme conditions. The parasites therefore developed unique mechanisms for promoting a stage-specific program for gene expression, with translation playing a central role. There are six paralogs of the cap-binding protein eIF4E, which vary in their function, expression profiles, and assemblages. Using the CRISPR-Cas9 system for Leishmania, we deleted one of the two LeishIF4E-3 alleles. Expression of LeishIF4E-3 in the deletion mutant was low, leading to reduction in global translation and growth of the mutant cells. Cell morphology also changed, affecting flagellum growth, cell shape, and infectivity. The importance of this study is in highlighting that LeishIF4E-3 is essential for completion of the parasite life cycle. Our study gives new insight into how parasite virulence is determined.


Assuntos
Alelos , Sistemas CRISPR-Cas , Deleção de Genes , Leishmania mexicana/patogenicidade , Proteínas de Protozoários/genética , Animais , Leishmania mexicana/genética , Macrófagos/parasitologia , Camundongos , Mutação , Células RAW 264.7
6.
PLoS One ; 10(7): e0134262, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-26230932

RESUMO

Riboswitches are RNA genetic control elements that were originally discovered in bacteria and provide a unique mechanism of gene regulation. They work without the participation of proteins and are believed to represent ancient regulatory systems in the evolutionary timescale. One of the biggest challenges in riboswitch research is to find additional eukaryotic riboswitches since more than 20 riboswitch classes have been found in prokaryotes but only one class has been found in eukaryotes. Moreover, this single known class of eukaryotic riboswitch, namely the TPP riboswitch class, has been found in bacteria, archaea, fungi and plants but not in animals. The few examples of eukaryotic riboswitches were identified using sequence-based bioinformatics search methods such as a combination of BLAST and pattern matching techniques that incorporate base-pairing considerations. None of these approaches perform energy minimization structure predictions. There is a clear motivation to develop new bioinformatics methods, aside of the ongoing advances in covariance models, that will sample the sequence search space more flexibly using structural guidance while retaining the computational efficiency of sequence-based methods. We present a new energy minimization approach that transforms structure-based search into a sequence-based search, thereby enabling the utilization of well established sequence-based search utilities such as BLAST and FASTA. The transformation to sequence space is obtained by using an extended inverse RNA folding problem solver with sequence and structure constraints, available within RNAfbinv. Examples in applying the new method are presented for the purine and preQ1 riboswitches. The method is described in detail along with its findings in prokaryotes. Potential uses in finding novel eukaryotic riboswitches and optimizing pre-designed synthetic riboswitches based on ligand simulations are discussed. The method components are freely available for use.


Assuntos
Dobramento de RNA , Riboswitch , Conformação de Ácido Nucleico
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa