Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 35
Filtrar
1.
Plant Physiol ; 176(4): 2750-2760, 2018 04.
Artigo em Inglês | MEDLINE | ID: mdl-29440592

RESUMO

The shoot apical and axillary meristems control shoot development, effectively influencing lateral branch and leaf formation. The barley (Hordeum vulgare) uniculm2 (cul2) mutation blocks axillary meristem development, and mutant plants lack lateral branches (tillers) that normally develop from the crown. A genetic screen for cul2 suppressors recovered two recessive alleles of ELIGULUM-A (ELI-A) that partially rescued the cul2 tillering phenotype. Mutations in ELI-A produce shorter plants with fewer tillers and disrupt the leaf blade-sheath boundary, producing liguleless leaves and reduced secondary cell wall development in stems and leaves. ELI-A is predicted to encode an unannotated protein containing an RNaseH-like domain that is conserved in land plants. ELI-A transcripts accumulate at the preligule boundary, the developing ligule, leaf margins, cells destined to develop secondary cell walls, and cells surrounding leaf vascular bundles. Recent studies have identified regulatory similarities between boundary development in leaves and lateral organs. Interestingly, we observed ELI-A transcripts at the preligule boundary, suggesting that ELI-A contributes to boundary formation between the blade and sheath. However, we did not observe ELI-A transcripts at the axillary meristem boundary in leaf axils, suggesting that ELI-A is not involved in boundary development for axillary meristem development. Our results show that ELI-A contributes to leaf and lateral branch development by acting as a boundary gene during ligule development but not during lateral branch development.


Assuntos
Hordeum/genética , Meristema/genética , Folhas de Planta/genética , Proteínas de Plantas/genética , Flores/genética , Flores/crescimento & desenvolvimento , Flores/metabolismo , Regulação da Expressão Gênica no Desenvolvimento , Regulação da Expressão Gênica de Plantas , Hordeum/crescimento & desenvolvimento , Hordeum/metabolismo , Meristema/crescimento & desenvolvimento , Meristema/metabolismo , Mutação , Filogenia , Folhas de Planta/crescimento & desenvolvimento , Folhas de Planta/metabolismo , Proteínas de Plantas/classificação , Proteínas de Plantas/metabolismo , Caules de Planta/crescimento & desenvolvimento , Caules de Planta/metabolismo
2.
Plant Physiol ; 171(2): 1113-27, 2016 06.
Artigo em Inglês | MEDLINE | ID: mdl-27208226

RESUMO

Inflorescence architecture in small-grain cereals has a direct effect on yield and is an important selection target in breeding for yield improvement. We analyzed the recessive mutation laxatum-a (lax-a) in barley (Hordeum vulgare), which causes pleiotropic changes in spike development, resulting in (1) extended rachis internodes conferring a more relaxed inflorescence, (2) broadened base of the lemma awns, (3) thinner grains that are largely exposed due to reduced marginal growth of the palea and lemma, and (4) and homeotic conversion of lodicules into two stamenoid structures. Map-based cloning enforced by mapping-by-sequencing of the mutant lax-a locus enabled the identification of a homolog of BLADE-ON-PETIOLE1 (BOP1) and BOP2 as the causal gene. Interestingly, the recently identified barley uniculme4 gene also is a BOP1/2 homolog and has been shown to regulate tillering and leaf sheath development. While the Arabidopsis (Arabidopsis thaliana) BOP1 and BOP2 genes act redundantly, the barley genes contribute independent effects in specifying the developmental growth of vegetative and reproductive organs, respectively. Analysis of natural genetic diversity revealed strikingly different haplotype diversity for the two paralogous barley genes, likely affected by the respective genomic environments, since no indication for an active selection process was detected.


Assuntos
Proteínas de Arabidopsis/química , Genes Homeobox , Genes de Plantas , Hordeum/anatomia & histologia , Hordeum/genética , Inflorescência/anatomia & histologia , Homologia de Sequência de Aminoácidos , Proteínas de Arabidopsis/metabolismo , Pareamento de Bases/genética , Mapeamento Cromossômico , Clonagem Molecular , Ecótipo , Variação Genética , Anotação de Sequência Molecular , Mutação , Fenótipo , Filogenia , Plantas Geneticamente Modificadas , Recombinação Genética/genética , Análise de Sequência de DNA , Deleção de Sequência
3.
Plant Physiol ; 168(1): 164-74, 2015 May.
Artigo em Inglês | MEDLINE | ID: mdl-25818702

RESUMO

Tillers are vegetative branches that develop from axillary buds located in the leaf axils at the base of many grasses. Genetic manipulation of tillering is a major objective in breeding for improved cereal yields and competition with weeds. Despite this, very little is known about the molecular genetic bases of tiller development in important Triticeae crops such as barley (Hordeum vulgare) and wheat (Triticum aestivum). Recessive mutations at the barley Uniculme4 (Cul4) locus cause reduced tillering, deregulation of the number of axillary buds in an axil, and alterations in leaf proximal-distal patterning. We isolated the Cul4 gene by positional cloning and showed that it encodes a BROAD-COMPLEX, TRAMTRACK, BRIC-À-BRAC-ankyrin protein closely related to Arabidopsis (Arabidopsis thaliana) BLADE-ON-PETIOLE1 (BOP1) and BOP2. Morphological, histological, and in situ RNA expression analyses indicate that Cul4 acts at axil and leaf boundary regions to control axillary bud differentiation as well as the development of the ligule, which separates the distal blade and proximal sheath of the leaf. As, to our knowledge, the first functionally characterized BOP gene in monocots, Cul4 suggests the partial conservation of BOP gene function between dicots and monocots, while phylogenetic analyses highlight distinct evolutionary patterns in the two lineages.


Assuntos
Padronização Corporal , Genes de Plantas , Hordeum/crescimento & desenvolvimento , Hordeum/genética , Folhas de Planta/crescimento & desenvolvimento , Folhas de Planta/fisiologia , Proteínas de Plantas/genética , Anquirinas/metabolismo , Arabidopsis/metabolismo , Proteínas de Arabidopsis/metabolismo , Clonagem Molecular , Flores/metabolismo , Dados de Sequência Molecular , Mutação/genética , Fenótipo , Folhas de Planta/anatomia & histologia , Proteínas de Plantas/metabolismo , Brotos de Planta/fisiologia
4.
Proc Natl Acad Sci U S A ; 110(41): 16675-80, 2013 Oct 08.
Artigo em Inglês | MEDLINE | ID: mdl-24065816

RESUMO

Within the cereal grasses, variation in inflorescence architecture results in a conspicuous morphological diversity that in crop species influences the yield of cereal grains. Although significant progress has been made in identifying some of the genes underlying this variation in maize and rice, in the temperate cereals, a group that includes wheat, barley, and rye, only the dosage-dependent and highly pleiotropic Q locus in hexaploid wheat has been molecularly characterized. Here we show that the characteristic variation in the density of grains along the inflorescence, or spike, of modern cultivated barley (Hordeum vulgare) is largely the consequence of a perturbed interaction between microRNA172 and its corresponding binding site in the mRNA of an APELATA2 (AP2)-like transcription factor, HvAP2. We used genome-wide association and biparental mapping to identify HvAP2. By comparing inflorescence development and HvAP2 transcript abundance in an extreme dense-spike mutant and its nearly isogenic WT line, we show that HvAP2 turnover driven by microRNA 172 regulates the length of a critical developmental window that is required for elongation of the inflorescence internodes. Our data indicate that this heterochronic change, an altered timing of developmental events caused by specific temporal variation in the efficiency of HvAP2 turnover, leads to the striking differences in the size and shape of the barley spike.


Assuntos
Flores/fisiologia , Hordeum/genética , MicroRNAs/metabolismo , Sementes/fisiologia , Fatores de Transcrição/metabolismo , Sequência de Bases , Primers do DNA/genética , Flores/genética , Flores/ultraestrutura , Estudo de Associação Genômica Ampla , Hordeum/fisiologia , MicroRNAs/genética , Microscopia Eletrônica de Varredura , Dados de Sequência Molecular , Análise de Componente Principal , Reação em Cadeia da Polimerase em Tempo Real , Alinhamento de Sequência , Análise de Sequência de DNA , Fatores de Transcrição/genética
5.
Plant Physiol ; 166(4): 1912-27, 2014 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-25332507

RESUMO

Reduced plant height and culm robustness are quantitative characteristics important for assuring cereal crop yield and quality under adverse weather conditions. A very limited number of short-culm mutant alleles were introduced into commercial crop cultivars during the Green Revolution. We identified phenotypic traits, including sturdy culm, specific for deficiencies in brassinosteroid biosynthesis and signaling in semidwarf mutants of barley (Hordeum vulgare). This set of characteristic traits was explored to perform a phenotypic screen of near-isogenic short-culm mutant lines from the brachytic, breviaristatum, dense spike, erectoides, semibrachytic, semidwarf, and slender dwarf mutant groups. In silico mapping of brassinosteroid-related genes in the barley genome in combination with sequencing of barley mutant lines assigned more than 20 historic mutants to three brassinosteroid-biosynthesis genes (BRASSINOSTEROID-6-OXIDASE, CONSTITUTIVE PHOTOMORPHOGENIC DWARF, and DIMINUTO) and one brassinosteroid-signaling gene (BRASSINOSTEROID-INSENSITIVE1 [HvBRI1]). Analyses of F2 and M2 populations, allelic crosses, and modeling of nonsynonymous amino acid exchanges in protein crystal structures gave a further understanding of the control of barley plant architecture and sturdiness by brassinosteroid-related genes. Alternatives to the widely used but highly temperature-sensitive uzu1.a allele of HvBRI1 represent potential genetic building blocks for breeding strategies with sturdy and climate-tolerant barley cultivars.


Assuntos
Brassinosteroides/metabolismo , Regulação da Expressão Gênica de Plantas , Hordeum/genética , Alelos , Aminoácidos , Sequência de Bases , Mapeamento Cromossômico , Simulação por Computador , Grão Comestível , Hordeum/crescimento & desenvolvimento , Hordeum/metabolismo , Modelos Estruturais , Dados de Sequência Molecular , Mutação , Fenótipo , Análise de Sequência de DNA , Transdução de Sinais , Temperatura , Tempo (Meteorologia)
6.
Proc Natl Acad Sci U S A ; 109(11): 4326-31, 2012 Mar 13.
Artigo em Inglês | MEDLINE | ID: mdl-22371569

RESUMO

Time to flowering has an important impact on yield and has been a key trait in the domestication of crop plants and the spread of agriculture. In 1961, the cultivar Mari (mat-a.8) was the very first induced early barley (Hordeum vulgare L.) mutant to be released into commercial production. Mari extended the range of two-row spring barley cultivation as a result of its photoperiod insensitivity. Since its release, Mari or its derivatives have been used extensively across the world to facilitate short-season adaptation and further geographic range extension. By exploiting an extended historical collection of early-flowering mutants of barley, we identified Praematurum-a (Mat-a), the gene responsible for this key adaptive phenotype, as a homolog of the Arabidopsis thaliana circadian clock regulator Early Flowering 3 (Elf3). We characterized 87 induced mat-a mutant lines and identified >20 different mat-a alleles that had clear mutations leading to a defective putative ELF3 protein. Expression analysis of HvElf3 and Gigantea in mutant and wild-type plants demonstrated that mat-a mutations disturb the flowering pathway, leading to the early phenotype. Alleles of Mat-a therefore have important and demonstrated breeding value in barley but probably also in many other day-length-sensitive crop plants, where they may tune adaptation to different geographic regions and climatic conditions, a critical issue in times of global warming.


Assuntos
Adaptação Fisiológica/genética , Relógios Circadianos/genética , Genes de Plantas/genética , Hordeum/crescimento & desenvolvimento , Hordeum/genética , Mutação/genética , Estações do Ano , Agricultura , DNA de Plantas/genética , Flores/genética , Perfilação da Expressão Gênica , Regulação da Expressão Gênica de Plantas , Estudos de Associação Genética , Ligação Genética , Hordeum/fisiologia , Dados de Sequência Molecular , Fenótipo , Mapeamento Físico do Cromossomo , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Análise de Sequência de DNA , Sintenia/genética
7.
BMC Genomics ; 15: 104, 2014 Feb 06.
Artigo em Inglês | MEDLINE | ID: mdl-24498911

RESUMO

UNLABELLED: We explored the use of genotyping by sequencing (GBS) on a recombinant inbred line population (GPMx) derived from a cross between the two-rowed barley cultivar 'Golden Promise' (ari-e.GP/Vrs1) and the six-rowed cultivar 'Morex' (Ari-e/vrs1) to map plant height. We identified three Quantitative Trait Loci (QTL), the first in a region encompassing the spike architecture gene Vrs1 on chromosome 2H, the second in an uncharacterised centromeric region on chromosome 3H, and the third in a region of chromosome 5H coinciding with the previously described dwarfing gene Breviaristatum-e (Ari-e). BACKGROUND: Barley cultivars in North-western Europe largely contain either of two dwarfing genes; Denso on chromosome 3H, a presumed ortholog of the rice green revolution gene OsSd1, or Breviaristatum-e (ari-e) on chromosome 5H. A recessive mutant allele of the latter gene, ari-e.GP, was introduced into cultivation via the cv. 'Golden Promise' that was a favourite of the Scottish malt whisky industry for many years and is still used in agriculture today. RESULTS: Using GBS mapping data and phenotypic measurements we show that ari-e.GP maps to a small genetic interval on chromosome 5H and that alternative alleles at a region encompassing Vrs1 on 2H along with a region on chromosome 3H also influence plant height. The location of Ari-e is supported by analysis of near-isogenic lines containing different ari-e alleles. We explored use of the GBS to populate the region with sequence contigs from the recently released physically and genetically integrated barley genome sequence assembly as a step towards Ari-e gene identification. CONCLUSIONS: GBS was an effective and relatively low-cost approach to rapidly construct a genetic map of the GPMx population that was suitable for genetic analysis of row type and height traits, allowing us to precisely position ari-e.GP on chromosome 5H. Mapping resolution was lower than we anticipated. We found the GBS data more complex to analyse than other data types but it did directly provide linked SNP markers for subsequent higher resolution genetic analysis.


Assuntos
Genes de Plantas , Hordeum/genética , Alelos , Mapeamento Cromossômico , Ligação Genética , Genótipo , Hordeum/crescimento & desenvolvimento , Fenótipo , Polimorfismo de Nucleotídeo Único , Locos de Características Quantitativas , Análise de Sequência de DNA
8.
Plant Physiol ; 155(2): 617-27, 2011 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-21088227

RESUMO

Since the early 20th century, barley (Hordeum vulgare) has been a model for investigating the effects of physical and chemical mutagens and for exploring the potential of mutation breeding in crop improvement. As a consequence, extensive and well-characterized collections of morphological and developmental mutants have been assembled that represent a valuable resource for exploring a wide range of complex and fundamental biological processes. We constructed a collection of 881 backcrossed lines containing mutant alleles that induce a majority of the morphological and developmental variation described in this species. After genotyping these lines with up to 3,072 single nucleotide polymorphisms, comparison to their recurrent parent defined the genetic location of 426 mutant alleles to chromosomal segments, each representing on average <3% of the barley genetic map. We show how the gene content in these segments can be predicted through conservation of synteny with model cereal genomes, providing a route to rapid gene identification.


Assuntos
Genômica/métodos , Genótipo , Hordeum/genética , Alelos , Mapeamento Cromossômico , Cruzamentos Genéticos , DNA de Plantas/genética , Genes de Plantas , Hordeum/crescimento & desenvolvimento , Mutação , Oryza/genética , Polimorfismo de Nucleotídeo Único , Sintenia
9.
Theor Appl Genet ; 124(2): 373-84, 2012 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-21959909

RESUMO

Spike density in barley is under the control of several major genes, as documented previously by genetic analysis of a number of morphological mutants. One such class of mutants affects the rachis internode length leading to dense or compact spikes and the underlying genes were designated dense spike (dsp). We previously delimited two introgressed genomic segments on chromosome 3H (21 SNP loci, 35.5 cM) and 7H (17 SNP loci, 20.34 cM) in BW265, a BC(7)F(3) nearly isogenic line (NIL) of cv. Bowman as potentially containing the dense spike mutant locus dsp.ar, by genotyping 1,536 single nucleotide polymorphism (SNP) markers in both BW265 and its recurrent parent. Here, the gene was allocated by high-resolution bi-parental mapping to a 0.37 cM interval between markers SC57808 (Hv_SPL14)-CAPSK06413 residing on the short and long arm at the genetic centromere of chromosome 7H, respectively. This region putatively contains more than 800 genes as deduced by comparison with the collinear regions of barley, rice, sorghum and Brachypodium, Classical map-based isolation of the gene dsp.ar thus will be complicated due to the infavorable relationship of genetic to physical distances at the target locus.


Assuntos
Centrômero/genética , Mapeamento Cromossômico , Cromossomos de Plantas/genética , Flores/crescimento & desenvolvimento , Genes de Plantas/genética , Hordeum/genética , Fenótipo , Sequência de Bases , Primers do DNA/genética , Marcadores Genéticos/genética , Hordeum/crescimento & desenvolvimento , Dados de Sequência Molecular , Análise de Sequência de DNA
10.
Theor Appl Genet ; 125(1): 33-45, 2012 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-22395962

RESUMO

A typical barley (Hordeum vulgare) floret consists of reproductive organs three stamens and a pistil, and non-reproductive organs-lodicules and two floral bracts, abaxial called 'lemma' and adaxial 'palea'. The floret is subtended by two additional bracts called outer or empty glumes. Together these organs form the basic structural unit of the grass inflorescence, a spikelet. There are commonly three spikelets at each rachis (floral stem of the barley spike) node, one central and two lateral spikelets. Rare naturally occurring or induced phenotypic variants that contain a third bract subtending the central spikelets have been described in barley. The gene responsible for this phenotype was called the THIRD OUTER GLUME1 (Trd1). The Trd1 mutants fail to suppress bract growth and as a result produce leaf-like structures that subtend each rachis node in the basal portion of the spike. Also, floral development at the collar is not always suppressed. In rice and maize, recessive mutations in NECK LEAF1 (Nl1) and TASSEL SHEATH1 (Tsh1) genes, respectively, have been shown to be responsible for orthologous phenotypes. Fine mapping of the trd1 phenotype in an F(3) recombinant population enabled us to position Trd1 on the long arm of chromosome 1H to a 10 cM region. We anchored this to a conserved syntenic region on rice chromosome Os05 and selected a set of candidate genes for validation by resequencing PCR amplicons from a series of independent mutant alleles. This analysis revealed that a GATA transcription factor, recently proposed to be Trd1, contained mutations in 10 out of 14 independent trd1 mutant alleles that would generate non-functional TRD1 proteins. Together with genetic linkage data, we confirm the identity of Trd1 as the GATA transcription factor ortholog of rice Nl1 and maize Tsh1 genes.


Assuntos
Flores/genética , Genes de Plantas/genética , Genes Supressores , Hordeum/anatomia & histologia , Hordeum/genética , Supressão Genética , Regiões 3' não Traduzidas/genética , Regiões 5' não Traduzidas/genética , Alelos , Sequência de Bases , Cromossomos de Plantas/genética , Cruzamentos Genéticos , Flores/ultraestrutura , Estudos de Associação Genética , Hordeum/ultraestrutura , Dados de Sequência Molecular , Mutação/genética , Oryza/genética , Fenótipo , Mapeamento Físico do Cromossomo , Polimorfismo Genético
11.
BMC Genomics ; 11: 629, 2010 Nov 11.
Artigo em Inglês | MEDLINE | ID: mdl-21070652

RESUMO

BACKGROUND: The barley-Puccinia hordei (barley leaf rust) pathosystem is a model for investigating partial disease resistance in crop plants and genetic mapping of phenotypic resistance has identified several quantitative trait loci (QTL) for partial resistance. Reciprocal QTL-specific near-isogenic lines (QTL-NILs) have been developed that combine two QTL, Rphq2 and Rphq3, the largest effects detected in a recombinant-inbred-line (RIL) population derived from a cross between the super-susceptible line L94 and partially-resistant line Vada. The molecular mechanism underpinning partial resistance in these QTL-NILs is unknown. RESULTS: An Agilent custom microarray consisting of 15,000 probes derived from barley consensus EST sequences was used to investigate genome-wide and QTL-specific differential expression of genes 18 hours post-inoculation (hpi) with Puccinia hordei. A total of 1,410 genes were identified as being significantly differentially expressed across the genome, of which 55 were accounted for by the genetic differences defined by QTL-NILs at Rphq2 and Rphq3. These genes were predominantly located at the QTL regions and are, therefore, positional candidates. One gene, encoding the transcriptional repressor Ethylene-Responsive Element Binding Factor 4 (HvERF4) was located outside the QTL at 71 cM on chromosome 1H, within a previously detected eQTL hotspot for defence response. The results indicate that Rphq2 or Rphq3 contains a trans-eQTL that modulates expression of HvERF4. We speculate that HvERF4 functions as an intermediate that conveys the response signal from a gene(s) contained within Rphq2 or Rphq3 to a host of down-stream defense responsive genes. Our results also reveal that barley lines with extreme or intermediate partial resistance phenotypes exhibit a profound similarity in their spectrum of Ph-responsive genes and that hormone-related signalling pathways are actively involved in response to Puccinia hordei. CONCLUSIONS: Differential gene expression between QTL-NILs identifies genes predominantly located within the target region(s) providing both transcriptional and positional candidate genes for the QTL. Genetically mapping the differentially expressed genes relative to the QTL has the potential to discover trans-eQTL mediated regulatory relays initiated from genes within the QTL regions.


Assuntos
Basidiomycota/fisiologia , Perfilação da Expressão Gênica , Hordeum/genética , Hordeum/microbiologia , Imunidade Inata/genética , Doenças das Plantas/imunologia , Locos de Características Quantitativas/genética , Regulação da Expressão Gênica de Plantas , Genes de Plantas/genética , Hordeum/imunologia , Endogamia , Doenças das Plantas/genética , Doenças das Plantas/microbiologia , Plântula/genética , Plântula/microbiologia
12.
Plant Biotechnol J ; 8(1): 10-27, 2010 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-20055957

RESUMO

An expression Quantitative Trait Locus or eQTL is a chromosomal region that accounts for a proportion of the variation in abundance of a mRNA transcript observed between individuals in a genetic mapping population. A single gene can have one or multiple eQTLs. Large scale mRNA profiling technologies advanced genome-wide eQTL mapping in a diverse range of organisms allowing thousands of eQTLs to be detected in a single experiment. When combined with classical or trait QTLs, correlation analyses can directly suggest candidates for genes underlying these traits. Furthermore, eQTL mapping data enables genetic regulatory networks to be modelled and potentially provide a better understanding of the underlying phenotypic variation. The mRNA profiling data sets can also be used to infer the chromosomal positions of thousands of genes, an outcome that is particularly valuable for species with unsequenced genomes where the chromosomal location of the majority of genes remains unknown. In this review we focus on eQTL studies in plants, addressing conceptual and technical aspects that include experimental design, genetic polymorphism prediction and candidate gene identification.


Assuntos
Mapeamento Cromossômico/métodos , Plantas/genética , Locos de Características Quantitativas , DNA de Plantas/genética , Perfilação da Expressão Gênica , Genes de Plantas , Ligação Genética , Modelos Genéticos , Análise de Sequência com Séries de Oligonucleotídeos , Polimorfismo Genético , Análise de Sequência de DNA
13.
Biochem Soc Trans ; 38(2): 683-8, 2010 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-20298243

RESUMO

The identification of genes underlying complex quantitative traits such as grain yield by means of conventional genetic analysis (positional cloning) requires the development of several large mapping populations. However, it is possible that phenotypically related, but more extreme, allelic variants generated by mutational studies could provide a means for more efficient cloning of QTLs (quantitative trait loci). In barley (Hordeum vulgare), with the development of high-throughput genome analysis tools, efficient genome-wide identification of genetic loci harbouring mutant alleles has recently become possible. Genotypic data from NILs (near-isogenic lines) that carry induced or natural variants of genes that control aspects of plant development can be compared with the location of QTLs to potentially identify candidate genes for development--related traits such as grain yield. As yield itself can be divided into a number of allometric component traits such as tillers per plant, kernels per spike and kernel size, mutant alleles that both affect these traits and are located within the confidence intervals for major yield QTLs may represent extreme variants of the underlying genes. In addition, the development of detailed comparative genomic models based on the alignment of a high-density barley gene map with the rice and sorghum physical maps, has enabled an informed prioritization of 'known function' genes as candidates for both QTLs and induced mutant genes.


Assuntos
Clonagem Molecular/métodos , Hordeum/genética , Mutagênese/fisiologia , Plantas Geneticamente Modificadas/genética , Locos de Características Quantitativas/genética , Modelos Biológicos , Modelos Genéticos , Característica Quantitativa Herdável
14.
PLoS Comput Biol ; 5(3): e1000317, 2009 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-19282978

RESUMO

It is well known that Affymetrix microarrays are widely used to predict genome-wide gene expression and genome-wide genetic polymorphisms from RNA and genomic DNA hybridization experiments, respectively. It has recently been proposed to integrate the two predictions by use of RNA microarray data only. Although the ability to detect single feature polymorphisms (SFPs) from RNA microarray data has many practical implications for genome study in both sequenced and unsequenced species, it raises enormous challenges for statistical modelling and analysis of microarray gene expression data for this objective. Several methods are proposed to predict SFPs from the gene expression profile. However, their performance is highly vulnerable to differential expression of genes. The SFPs thus predicted are eventually a reflection of differentially expressed genes rather than genuine sequence polymorphisms. To address the problem, we developed a novel statistical method to separate the binding affinity between a transcript and its targeting probe and the parameter measuring transcript abundance from perfect-match hybridization values of Affymetrix gene expression data. We implemented a Bayesian approach to detect SFPs and to genotype a segregating population at the detected SFPs. Based on analysis of three Affymetrix microarray datasets, we demonstrated that the present method confers a significantly improved robustness and accuracy in detecting the SFPs that carry genuine sequence polymorphisms when compared to its rivals in the literature. The method developed in this paper will provide experimental genomicists with advanced analytical tools for appropriate and efficient analysis of their microarray experiments and biostatisticians with insightful interpretation of Affymetrix microarray data.


Assuntos
Algoritmos , Mapeamento Cromossômico/métodos , Perfilação da Expressão Gênica/métodos , Análise de Sequência com Séries de Oligonucleotídeos/métodos , Análise de Sequência de DNA/métodos , Análise de Sequência de RNA/métodos , Sequência de Bases , Dados de Sequência Molecular , Polimorfismo Genético
15.
Plant J ; 56(2): 287-296, 2008 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-18643973

RESUMO

Non-synonymous coding mutations in a gene change the resulting protein, no matter where it is expressed, but the effects of cis-regulatory mutations could be spatially or temporally limited - a phenomenon termed limited pleiotropy. Here, we report the genome-wide occurrence of limited pleiotropy of cis-regulatory mutations in barley (Hordeum vulgare L.) using Affymetrix analysis of 22,840 genes in a population of 139 doubled haploid lines derived from a cross between the cultivars Steptoe (St) and Morex (Mx). We identified robust cis-acting expression regulators that segregate as major genes in two successive ontogenetic stages: germinating embryo tissues and seedling leaves from the embryonic axis. We show that these polymorphisms may be consistent in both tissues or may cause a dramatic change in transcript abundance in one tissue but not in another. We also show that the parental allele that increases expression can vary with the tissue, suggesting nucleotide polymorphism in enhancer sequences. Because of the limited pleiotropy of cis-regulating mutations, the number of cis expression quantitative trait loci (cis-eQTLs) discovered by 'genetical genomics' is strongly affected by the particular tissue or developmental stage studied. Given that limited pleiotropy is a common feature of cis-regulatory mutations in barley, we predict that the phenomenon would be relevant to developmental and/or tissue-specific interactions across wide taxonomic boundaries in both plants and animals.


Assuntos
Regulação da Expressão Gênica de Plantas , Genoma de Planta , Hordeum/genética , Locos de Características Quantitativas , Mapeamento Cromossômico , Cruzamentos Genéticos , Perfilação da Expressão Gênica , Genes de Plantas , Haploidia , Padrões de Herança , Escore Lod , Mutação , Análise de Sequência com Séries de Oligonucleotídeos , Polimorfismo Genético , RNA Mensageiro/genética , RNA de Plantas/genética , Plântula/genética , Sementes/genética , Transcrição Gênica
16.
BMC Genomics ; 10: 285, 2009 Jun 29.
Artigo em Inglês | MEDLINE | ID: mdl-19558723

RESUMO

BACKGROUND: Barley and particularly wheat are two grass species of immense agricultural importance. In spite of polyploidization events within the latter, studies have shown that genotypically and phenotypically these species are very closely related and, indeed, fertile hybrids can be created by interbreeding. The advent of two genome-scale Affymetrix GeneChips now allows studies of the comparison of their transcriptomes. RESULTS: We have used the Wheat GeneChip to create a "gene expression atlas" for the wheat transcriptome (cv. Chinese Spring). For this, we chose mRNA from a range of tissues and developmental stages closely mirroring a comparable study carried out for barley (cv. Morex) using the Barley1 GeneChip. This, together with large-scale clustering of the probesets from the two GeneChips into "homologous groups", has allowed us to perform a genomic-scale comparative study of expression patterns in these two species. We explore the influence of the polyploidy of wheat on the results obtained with the Wheat GeneChip and quantify the correlation between conservation in gene sequence and gene expression in wheat and barley. In addition, we show how the conservation of expression patterns can be used to elucidate, probeset by probeset, the reliability of the Wheat GeneChip. CONCLUSION: While there are many differences in expression on the level of individual genes and tissues, we demonstrate that the wheat and barley transcriptomes appear highly correlated. This finding is significant not only because given small evolutionary distance between the two species it is widely expected, but also because it demonstrates that it is possible to use the two GeneChips for comparative studies. This is the case even though their probeset composition reflects rather different design principles as well as, of course, the present incomplete knowledge of the gene content of the two species. We also show that, in general, the Wheat GeneChip is not able to distinguish contributions from individual homoeologs. Furthermore, the comparison between the two species leads us to conclude that the conservation of both gene sequence as well as gene expression is positively correlated with absolute expression levels, presumably reflecting increased selection pressure on genes coding for proteins present at high levels. In addition, the results indicate the presence of a correlation between sequence and expression conservation within the Triticeae.


Assuntos
Hibridização Genômica Comparativa , Perfilação da Expressão Gênica/métodos , Hordeum/genética , Triticum/genética , Genoma de Planta , Análise de Sequência com Séries de Oligonucleotídeos , RNA Mensageiro/genética , RNA de Plantas/genética
17.
BMC Genomics ; 10: 582, 2009 Dec 04.
Artigo em Inglês | MEDLINE | ID: mdl-19961604

RESUMO

BACKGROUND: High density genetic maps of plants have, nearly without exception, made use of marker datasets containing missing or questionable genotype calls derived from a variety of genic and non-genic or anonymous markers, and been presented as a single linear order of genetic loci for each linkage group. The consequences of missing or erroneous data include falsely separated markers, expansion of cM distances and incorrect marker order. These imperfections are amplified in consensus maps and problematic when fine resolution is critical including comparative genome analyses and map-based cloning. Here we provide a new paradigm, a high-density consensus genetic map of barley based only on complete and error-free datasets and genic markers, represented accurately by graphs and approximately by a best-fit linear order, and supported by a readily available SNP genotyping resource. RESULTS: Approximately 22,000 SNPs were identified from barley ESTs and sequenced amplicons; 4,596 of them were tested for performance in three pilot phase Illumina GoldenGate assays. Data from three barley doubled haploid mapping populations supported the production of an initial consensus map. Over 200 germplasm selections, principally European and US breeding material, were used to estimate minor allele frequency (MAF) for each SNP. We selected 3,072 of these tested SNPs based on technical performance, map location, MAF and biological interest to fill two 1536-SNP "production" assays (BOPA1 and BOPA2), which were made available to the barley genetics community. Data were added using BOPA1 from a fourth mapping population to yield a consensus map containing 2,943 SNP loci in 975 marker bins covering a genetic distance of 1099 cM. CONCLUSION: The unprecedented density of genic markers and marker bins enabled a high resolution comparison of the genomes of barley and rice. Low recombination in pericentric regions is evident from bins containing many more than the average number of markers, meaning that a large number of genes are recombinationally locked into the genetic centromeric regions of several barley chromosomes. Examination of US breeding germplasm illustrated the usefulness of BOPA1 and BOPA2 in that they provide excellent marker density and sensitivity for detection of minor alleles in this genetically narrow material.


Assuntos
Hordeum/genética , Polimorfismo de Nucleotídeo Único , Alelos , Ligação Genética , Marcadores Genéticos , Técnicas Genéticas , Genótipo
18.
Funct Integr Genomics ; 9(1): 97-108, 2009 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-18633654

RESUMO

Common wild rice (Oryza rufipogon) plays an important role by contributing to modern rice breeding. In this paper, we report the sequence and analysis of a 172-kb genomic DNA region of wild rice around the RM5 locus, which is associated with the yield QTL yld1.1. Comparative sequence analysis between orthologous RM5 regions from Oryza sativa ssp. japonica, O. sativa ssp. indica and O. rufipogon revealed a high level of conserved synteny in the content, homology, structure, orientation, and physical distance of all 14 predicted genes. Twelve of the putative genes were supported by matches to proteins with known function, whereas two were predicted by homology to rice and other plant expressed sequence tags or complementary DNAs. The remarkably high level of conservation found in coding, intronic and intergenic regions may indicate high evolutionary selection on the RM5 region. Although our analysis has not defined which gene(s) determine the yld1.1 phenotype, allelic variation and the insertion of transposable elements, among other nucleotide changes, represent potential variation responsible for the yield QTL. However, as suggested previously, two putative receptor-like protein kinase genes remain the key suspects for yld1.1.


Assuntos
Pareamento de Bases/genética , DNA de Plantas/genética , Genoma de Planta/genética , Oryza/genética , Análise de Sequência de DNA , Cromossomos Artificiais Bacterianos , Células Clonais , Éxons/genética , Genes de Plantas , Íntrons/genética , Polimorfismo de Nucleotídeo Único/genética , Sequências Repetitivas de Ácido Nucleico , Homologia de Sequência do Ácido Nucleico
19.
Methods Mol Biol ; 513: 81-92, 2009.
Artigo em Inglês | MEDLINE | ID: mdl-19347647

RESUMO

Transcript abundance data from cRNA hybridizations to Affymetrix microarrays can potentially be used to identify genetic markers to facilitate high-throughput genotyping. We have shown that it is easily possible to use the information from Affymetrix expression arrays to accurately identify over 4,000 robust polymorphic transcript-derived markers (TDMs). We developed the method to identity TDM polymorphisms from experiments involving two tissues in two commercial varieties of barley and their doubled-haploid progeny. These TDMs represent ~18% of the total barley genes on the chip and can be used to predict the genotypes in an F(1)-derived, doubled-haploid population. According to our estimates, 35% of the TDMs reveal nucleotide polymorphism of the particular gene (single feature polymorphisms, SFPs) while 65% mark polymorphism resulting in extreme variation of gene expression (genetic expression markers, GEMs). These latter are probably mainly cis-acting regulators while a small proportion, approximately 5%, are loosely or un-linked transregulators.


Assuntos
Perfilação da Expressão Gênica/métodos , Hordeum/genética , Análise de Sequência com Séries de Oligonucleotídeos/métodos , Mapeamento Cromossômico , Marcadores Genéticos , Polimorfismo de Nucleotídeo Único , RNA Mensageiro/genética , RNA de Plantas/genética
20.
Genetika ; 45(11): 1493-505, 2009 Nov.
Artigo em Russo | MEDLINE | ID: mdl-20058796

RESUMO

An alternative to complete genome sequencing is development and analysis of ESTs-fragments of transcribed coding DNA sequences. The EST collections also enhanced the development of cDNA microarray technologies, which make possible assessing the transcription levels of several thousand genes in a studied tissue of an organism in the same experiment. This paper provides an overview of the results of experiments with a barley microarray, Affymetrix Barley1 GeneChip. The variation in transcription levels of over 22000 genes in germinating barley grain of 150 barley double haploid lines produced by crossing cultivars Steptoe and Morex. Variation in gene expression of each gene is a quantitative trait, which can be mapped in population of double haploids as the genetic loci determining its variation (expressed QTL or eQTL). A regulatory locus (eQTL) can colocalize with the corresponding gene on genetic map (cis-eQTL) or be distant from it, frequently on another chromosome (trans-eQTL). Thus, it is possible to detect and analyze cis- and trans-regulatory loci for genes on a genome-wide scale. The design of the Affymetrix oligonucleotide arrays makes it possible not only to concurrently test the transcription level of several thousand genes, but also to simultaneously detect the polymorphic regions in cDNA sequences, thereby finding a considerable fraction of all nucleotide substitutions between the compared genotypes. Two types of data (the expression levels of several thousand genes and the presence of polymorphic sites in their sequences) can be obtained concurrently when processing the results of the same experiment. The details of both procedures are illustrated with explanatory examples.


Assuntos
Regulação da Expressão Gênica de Plantas/fisiologia , Hordeum/fisiologia , Análise de Sequência com Séries de Oligonucleotídeos , Transcrição Gênica/fisiologia , Cromossomos de Plantas/fisiologia , Etiquetas de Sequências Expressas , Perfilação da Expressão Gênica , Genes de Plantas/fisiologia , Variação Genética/fisiologia , Genótipo , Locos de Características Quantitativas/fisiologia
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa