Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Inorg Chem ; 61(21): 8182-8192, 2022 May 30.
Artigo em Inglês | MEDLINE | ID: mdl-35580163

RESUMO

The reduction of nitrite (NO2-) to generate nitric oxide (NO) is a significant area of research due to their roles in the global nitrogen cycle. Here, we describe various modifications of the tris(5-cyclohexyliminopyrrol-2-ylmethyl)amine H3[N(piR)3] ligand where the steric bulk and acidity of the secondary coordination sphere were explored in the non-heme iron system for nitrite reduction. The cyclohexyl and 2,4,6-trimethylphenyl variants of the ligand were used to probe the mechanism of nitrite reduction. While previously stoichiometric addition of nitrite to the iron(II)-species generated an iron(III)-oxo complex, changing the secondary coordination sphere to mesityl resulted in an iron(III)-hydroxo complex. Subsequent addition of an electron and two protons led to the release of water and regeneration of the starting iron(II) catalyst. This sequence mirrored the proposed mechanism of nitrite reduction in biological systems, where the distal histidine residue shuttles protons to the active site. Computational studies aimed at interrogating the dissimilar behavior of the cyclohexyl and mesityl ligand systems resulting in Fe(III)-oxo and Fe(III)-hydroxo complexes, respectively, shed light on the key role of H-bonds involving the secondary coordination sphere in the relative stability of these species.


Assuntos
Compostos Férricos , Nitritos , Compostos Férricos/química , Compostos Ferrosos/química , Ferro/química , Ligantes , Nitritos/química , Prótons
2.
J Am Chem Soc ; 141(16): 6639-6650, 2019 04 24.
Artigo em Inglês | MEDLINE | ID: mdl-30969766

RESUMO

The characterization of high-valent iron centers in enzymes has been aided by synthetic model systems that mimic their reactivity or structural and spectral features. For example, the cleavage of dioxygen often produces an iron(IV)-oxo that has been characterized in a number of enzymatic and synthetic systems. In non-heme 2-oxogluterate dependent (iron-2OG) enzymes, the ferryl species abstracts an H-atom from bound substrate to produce the proposed iron(III)-hydroxo and caged substrate radical. Most iron-2OG enzymes perform a radical rebound hydroxylation at the site of the H-atom abstraction (HAA); however, recent reports have shown that certain substrates can be desaturated through the loss of a second H atom at a site adjacent to a heteroatom (N or O) for most native desaturase substrates. One proposed mechanism for the removal of the second H-atom  involves a polar-cleavage mechanism (electron transfer-proton transfer) by the iron(III)-hydroxo, as opposed to a second HAA. Herein we report the synthesis and characterization of a series of iron complexes with hydrogen bonding interactions between bound aquo or hydroxo ligands and the secondary coordination sphere in ferrous and ferric complexes. Interconversion among the iron species is accomplished by stepwise proton or electron addition or subtraction, as well as H-atom transfer (HAT). The calculated bond dissociation free energies (BDFEs) of two ferric hydroxo complexes, differentiated by their noncovalent interactions and reactivity, suggest that neither complex is capable of activating even weak C-H bonds, lending further support to the proposed mechanism for desaturation in iron-2OG desaturase enzymes. Additionally, the ferric hydroxo species are differentiated by their reactivity toward performing a radical rebound hydroxylation of triphenylmethylradical. Our findings should encourage further study of the desaturase systems that may contain unique H-bonding motifs proximal to the active site that help bias substrate desaturation over hydroxylation.

3.
Inorg Chem ; 58(23): 15801-15811, 2019 Dec 02.
Artigo em Inglês | MEDLINE | ID: mdl-31714068

RESUMO

O2 activation at nonheme iron centers is a common motif in biological systems. While synthetic models have provided numerous insights into the reactivity of high-valent iron-oxo complexes related to biological processes, the majority of these complexes are synthesized using alternative oxidants. This report describes O2 activation by an iron(II)-triflate complex of the imino-functionalized tris(pyrrol-2-ylmethyl)amine ligand framework, H3[N(piCy)3]. Initial reaction conditions result in the formation of a mixture of oxidation products including terminal iron(III)-oxo and iron(III)-hydroxo complexes. The relevance of these species to the O2 activation process is demonstrated through reactivity studies and electrochemical analysis of the iron(III)-oxo complex.

4.
Inorg Chem ; 56(9): 4852-4863, 2017 May 01.
Artigo em Inglês | MEDLINE | ID: mdl-28394119

RESUMO

The derivatization of the imino-functionalized tris(pyrrolylmethyl)amine ligand framework, N(XpiR)3 (XLR; X = H, Br; R = cyclohexyl (Cy), phenyl (Ph), 2,6- diisopropylphenyl (DIPP)), is reported. Modular ligand synthesis allows for facile modification of both the primary and secondary coordination sphere electronics. The iron(II)-hydroxo complexes, N(XpiR)(XafaR)2Fe(II)OH (XLRFeIIOH), are synthesized to establish the impact of the ligand modifications on the complexes' electronic properties, including their chemical and electrochemical oxidation. Cyclic voltammetry demonstrates that the Fe(II/III) redox couple spans a 400 mV range across the series. The origin of the shifted potential is explained based on spectroscopic, structural, and theoretical analyses of the iron(II) and iron(III) compounds.

5.
Dalton Trans ; 50(35): 12088-12092, 2021 Sep 14.
Artigo em Inglês | MEDLINE | ID: mdl-34519757

RESUMO

Hydrogen bonding networks are vital for metallo-enzymes to function; however, modeling these systems is non-trivial. We report the synthesis of metal chloride (M = Mn, Fe, Co) complexes with intra- and inter-ligand hydrogen bonding interactions. The intra-ligand hydrogen bonds are shown to have a profound effect on the geometry of the metal center.

SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa