Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
Intervalo de ano de publicação
1.
Animals (Basel) ; 14(6)2024 Mar 19.
Artigo em Inglês | MEDLINE | ID: mdl-38540053

RESUMO

The purpose of this study was to determine the efficacy of tannic acid on the antioxidative function, immunity, and intestinal barrier of broilers co-infected with coccidia and Clostridium perfringens (CCP). A total of 294 1-day-old arbor acres(AA) broilers were divided into three groups: control group (CON), CCP co-infected group (CCP), and 1000 mg/kg TA + CCP co-infected group (CTA). This trial lasted for 28 days. The results showed that the CCP group decreased the activity of glutathione peroxidase (GSH-Px), total superoxide dismutase (T-SOD), catalase (CAT), and total antioxidant capacity (T-AOC) levels and increased the contents of hydrogen peroxide (H2O2) and malondialdehyde (MDA) in the jejunum (p < 0.05). The mRNA levels of GSH-Px3 and CAT in the liver and jejunum, and the mRNA levels of GSH-Px3, SOD, HO-1, and NAD(P)H quinone oxidoreductase I (NQO1) in the liver were down-regulated by CCP challenge (p < 0.05). In addition, the Keap1 and Nrf2 mRNA levels in the liver and jejunum, jejunal glutathione S-transferase (GST), and heme-oxygenase-1 (HO-1) were upregulated in the CCP group compared with CON (p < 0.05). The mRNA levels of interleukin 8 (IL-8), IL-1ß, inducible nitric oxide synthase (iNOS), and interferon γ (IFN-γ) in the jejunum were elevated, and jejunal mRNA levels of IL-10, zonula occludens protein1 (ZO-1), claudin-1, claudin-2, and occludin were decreased in the CCP treatment (p < 0.05). Dietary supplementation with 1000 mg/kg TA increased the activity of GSH-Px, T-SOD, CAT, and T-AOC and decreased the contents of H2O2 and MDA in the jejunum (p < 0.05). Compared with the CCP group, TA decreased the mRNA level of Keap1 and Nrf2 in the liver and jejunum, increased the GSH-Px3, SOD, and CAT mRNA in the liver, and alleviated the rise of IL-8, IL-1ß, iNOS, and IFN-γ and decrease in IL-10, occludin gene expression in the jejunum (p < 0.05). In conclusion, the addition of 1000 mg/kg TA to the diet improved the jejunal barrier, mitigated the jejunal inflammation, and increased the antioxidant capacity of the liver and jejunum through the activation of the transcription factor Nrf2 downstream of the Nrf2-Keap1 pathway in broilers with NE condition.

2.
Poult Sci ; 103(7): 103798, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38703759

RESUMO

Honokiol is a multifunctional polyphenol present in Magnolia officinalis. The effects of honokiol as a supplement in broiler chicken diets, and the underlying mechanisms, remain unclear. Therefore, the aim of the present study was to investigate the effects of honokiol on the growth performance, antioxidant capacity, and intestinal histomorphology of broiler chickens and to explore the underlying mechanisms. In total, 240 one-day-old broilers were randomly allocated to 5 dietary treatments, with 6 replicate pens and 8 birds per pen. Birds were fed a basal diet supplemented with 0 (blank control, BC), 100, 200, or 400 mg/kg honokiol (H100, H200, and H400), or 200 mg/kg bacitracin zinc (PC) for 42 d. The results showed that H200 and H400 increased body weight gain (BWG) and decreased feed conversion ratio (FCR) during the starter period (P < 0.05). H100 and H200 increased total superoxide dismutase (T-SOD) activity in the serum and decreased malondialdehyde (MDA) amount in the jejunum on d 42 (P < 0.05). Moreover, H100 increased villus height-to-crypt depth ratio in both the jejunum and ileum on d 21 (P < 0.05). PCR analysis showed that honokiol upregulated intestinal expression of glutathione peroxidase (GSH-Px) and downregulated intestinal expression of inducible nitric oxide synthase (iNOS) on d 42 (P < 0.05). The Shannon index, which represents the microbial alpha diversity, was reduced for the PC, H200, and H400 groups. Notably, honokiol treatment altered the cecal microbial community structure and promoted the enrichment of several bacteria, including Firmicutes and Lactobacillus. Higher production of short-chain fatty acids was observed in the cecal digesta of H100 birds, accompanied by an enriched glycolysis/gluconeogenesis pathway, according to the functional prediction of the cecal microbiota. This study provides evidence that honokiol improves growth performance, antioxidant capacity, and intestinal health of broiler chickens, possibly by manipulating the composition and function of the microbial community.


Assuntos
Ração Animal , Antioxidantes , Compostos de Bifenilo , Ceco , Galinhas , Dieta , Suplementos Nutricionais , Microbioma Gastrointestinal , Lignanas , Animais , Galinhas/fisiologia , Galinhas/crescimento & desenvolvimento , Lignanas/administração & dosagem , Lignanas/farmacologia , Ração Animal/análise , Compostos de Bifenilo/administração & dosagem , Antioxidantes/metabolismo , Dieta/veterinária , Suplementos Nutricionais/análise , Microbioma Gastrointestinal/efeitos dos fármacos , Ceco/microbiologia , Ceco/efeitos dos fármacos , Distribuição Aleatória , Masculino , Intestinos/efeitos dos fármacos , Intestinos/anatomia & histologia , Relação Dose-Resposta a Droga , Fenômenos Fisiológicos da Nutrição Animal/efeitos dos fármacos , Compostos Alílicos , Fenóis
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa