Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 10 de 10
Filtrar
Mais filtros

Base de dados
País como assunto
Tipo de documento
Intervalo de ano de publicação
1.
Bioprocess Biosyst Eng ; 39(5): 785-92, 2016 May.
Artigo em Inglês | MEDLINE | ID: mdl-26864877

RESUMO

Au nanoparticles (AuNPs) have shown the potential for a variety of applications due to their unique physical and chemical properties. In this study, a facile and affordable method for the synthesis of AuNPs via the liquefied mash of cassava starch has been described and the functionalized AuNPs by L-cysteine improved activity of recombinant xylanase was demonstrated. UV-Vis absorption spectroscopy, transmission electron microscopy, and zeta potential measurements were performed to characterize the AuNPs and monitor their synthesis. The presence of Au was confirmed by energy-dispersive X-ray spectroscopy (EDX) and the X-ray diffraction patterns showed that Au nanocrystals were face-centered cubic. The C=O stretching vibration in the Fourier transform infrared spectrum of AuNPs suggested that the hemiacetal C-OH of sugar molecules performed the reduction of Au³âº to Au°. The presence of C and O in the EDX spectrum and the negative zeta potential of AuNPs suggested that the biomolecules present in liquefied cassava mash were responsible for the stabilization of AuNPs. The surface of AuNPs was easily functionalized by L-cysteine, which improved the stability of AuNPs. Moreover, cysteine-functionalized AuNPs could significantly improve recombinant xylanase efficiency and stability.


Assuntos
Endo-1,4-beta-Xilanases/química , Ouro/química , Manihot/química , Nanopartículas Metálicas/química , Amido/química , Xilanos/química , Hidrólise , Microscopia Eletrônica de Transmissão , Proteínas Recombinantes/química , Espectrometria por Raios X , Espectrofotometria Ultravioleta
2.
Sci Rep ; 14(1): 18754, 2024 08 13.
Artigo em Inglês | MEDLINE | ID: mdl-39138325

RESUMO

Herbicides are widely used to control weeds in agriculture filed, however, the excessive use of the conventional formulation causes harmful side effects on the environment. To relieve this problem, natural polymer nanoparticles as herbicide carrier were rapidly developed and applied in recent years. In the present study, chitosan/tripolyphosphate (CS/TPP) nanoparticles were synthesized as nanocarrier to load herbicide 4-chloro-2-methylphenoxyacetate sodium salt (MCPA-Na). The encapsulation efficiency (EE) of 51.32% was obtained through measuring indirectly by high performance liquid chromatography (HPLC). The free and MCPA-Na-loaded CS/TPP nanoparticles were characterized by using dynamic light scattering (DLS), zeta potential, Fourier transform infrared spectroscopy (FTIR), and scanning electron microscopy (SEM). The encapsulation of MCPA-Na in CS/TPP nanoparticles resulted in the change of MCPA-Na release profile in different pH media and displayed effective sustained-release under neutral condition. The evaluation of herbicidal activity against Bidens pilosa L. showed that the efficacy enhancement of MCPA-Na was realized after encapsulation in CS/TPP nanoparticles. The proposed herbicide nanoformulation presented a good potential as a sustainable alternative for weed control in agriculture.


Assuntos
Ácido 2-Metil-4-clorofenoxiacético , Bidens , Quitosana , Herbicidas , Nanopartículas , Quitosana/química , Quitosana/farmacologia , Quitosana/análogos & derivados , Herbicidas/química , Herbicidas/farmacologia , Nanopartículas/química , Bidens/química , Espectroscopia de Infravermelho com Transformada de Fourier , Portadores de Fármacos/química , Polifosfatos/química
3.
Nanomaterials (Basel) ; 13(10)2023 May 13.
Artigo em Inglês | MEDLINE | ID: mdl-37242051

RESUMO

Phytosynthesis of silver nanoparticles (Ag NPs) has been progressively acquiring attractiveness. In this study, the root of Zanthoxylum nitidum was used to synthesize Ag NPs, and its pre-emergence herbicidal activity was tested. The synthesized Ag NPs by the aqueous extract from Z. nitidum were characterized by visual inspection, ultraviolet-visible spectroscopy, dynamic light scattering (DLS), X-ray diffraction (XRD), transmission electron microscopy (TEM), and energy dispersive X-ray spectroscopy (EDX). The plant-mediated synthesis was completed within 180 min and the Ag NPs exhibited a characteristic peak at around 445 nm. The results of the DLS measurement showed that the average hydrodynamic diameter was 96 nm with a polydispersity index (PDI) of 0.232. XRD results indicated the crystalline nature of the phytogenic Ag NPs. A TEM analysis revealed that the nanoparticles were spherical with an average particle size of 17 nm. An EDX spectrum confirmed the presence of an elemental silver signal. Furthermore, the Ag NPs exhibited a herbicidal potential against the seed germination and seedling growth of Bidens Pilosa L. The present work indicates that Ag NPs synthesized by plant extract could have potential for the development of a new nanoherbicide for weed prevention and control.

4.
Front Microbiol ; 13: 1032001, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36353460

RESUMO

Bensulfuron methyl (BSM) is a widely used sulfonylurea herbicide in agriculture. However, the large-scale BSM application causes severe environmental problems. Biodegradation is an important way to remove BSM residue. In this study, an endophytic bacterium strain CD3, newly isolated from barnyard grass (Echinochloa crus-galli), could effectively degrade BSM in mineral salt medium. The strain CD3 was identified as Proteus sp. based on the phenotypic features, physiological biochemical characteristics, and 16S rRNA gene sequence. The suitable conditions for BSM degradation by this strain were 20-40°C, pH 6-8, the initial concertation of 12.5-200 mg L-1 with 10 g L-1 glucose as additional carbon source. The endophyte was capable of degrading above 98% BSM within 7 d under the optimal degrading conditions. Furthermore, strain CD3 could also effectively degrade other sulfonylurea herbicides including nicosulfuron, halosulfuron methyl, pyrazosulfuron, and ethoxysulfuron. Extracellular enzyme played a critical role on the BSM degradation by strain CD3. Two degrading metabolites were detected and identified by using liquid chromatography-mass spectrometry (LC-MS). The biochemical degradation pathways of BSM by this endophyte were proposed. The genomic analysis of strain CD3 revealed the presence of putative hydrolase or esterase genes involved in BSM degradation, suggesting that a novel degradation enzyme for BSM was present in this BSM-degrading Proteus sp. CD3. The results of this research suggested that strain CD3 may have potential for using in the bioremediation of BSM-contaminated environment.

5.
Polymers (Basel) ; 13(10)2021 May 13.
Artigo em Inglês | MEDLINE | ID: mdl-34068082

RESUMO

Despite the rapid development of two-dimensional covalent organic frameworks (2D COFs) in recent years, it remains a great challenge to synthesize highly crystalline COF materials. Here, a CNC-assisted approach was adopted to synthesize high crystallinity COF materials. A series of 2D COF films were synthesized at the air-water interface by using cellulose nanocrystals (CNCs) as the template. The occurrence of Schiff reactions based on the imine bond was demonstrated by Raman spectroscopy and Fourier transform infrared spectroscopy (FTIR). Scanning electron microscopy (SEM) exhibited the appearances of 2D COF films were flower-like. When CNCs were added to a certain extent, the size of a single petal in the flowers gradually increased with the amount of CNCs. The film with large petals was characterized by Ultraviolet-Visible diffuse reflectance spectroscopy (UV-Vis DRS), X-ray photoelectron spectroscopy (XPS), transmission electron microscopy (TEM), and selected area electron diffraction (SAED). In UV-Vis DRS curves, the S-band of COF-366 film was red-shifted by 24 nm compared with that of 5,10,15,20-tetrakis(4-aminophenyl)-21H,23H-porphyrin (TAPP), confirming the existence of extended conjugation in COF-366 film. XPS was used to identify the surface composition of the sample. The N1s signal of the film indicated that each TAPP formed four imine bonds with 2,5-dihydroxyterephthalaldehyde (DHTA) in COF-366 film. TEM images showed that CNCs had an influence on the crystal size. It was observed from SAED that the crystallinity of the film with CNCs was higher than the film without CNCs. This work provided a new template for improving the crystallinity of 2D COF films.

6.
J Hazard Mater ; 399: 123040, 2020 11 15.
Artigo em Inglês | MEDLINE | ID: mdl-32526443

RESUMO

Halosulfuron methyl (HM) is a new, highly active sulfonylurea herbicide that has been widely used for weed control in agricultural production. However, its potential ecological risks remain unknown. In this study, we investigated the impact of different concentrations of HM on bacterial communities in sugarcane rhizospheric soil by using 16S rRNA gene high-throughput sequencing. The half-life of HM for 130 mg/kg, 600 mg/kg, and 1300 mg/kg spraying concentrations were 6.64, 9.19, and 9.87 d, respectively. HM application did not alter the alpha or beta diversity of the soil bacterial community, whereas some microbial populations and the main microbial functional groups were significantly altered by HM exposure. The phylum Cyanobacteria and genus unclassified Chloroflexi group KD4-96 were found to be positively correlated with HM concentration in soils, indicating that they are highly involved in the biodegradation of HM in soils. Relationship analysis between soil properties and microbial communities showed that total nitrogen and total phosphorus concentration were two key factors that significantly influenced microbial community structure. To our best knowledge, this is the first microbial ecotoxicological assessment of HM in agricultural soil.


Assuntos
Rizosfera , Saccharum , RNA Ribossômico 16S/genética , Solo , Microbiologia do Solo , Compostos de Sulfonilureia
7.
PLoS One ; 12(8): e0182556, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-28809955

RESUMO

A diuron-degrading endophyte DP8-1 was isolated from sugarcane root grown in diuron-treated soil in the present study. The endophyte was identified as Neurospora intermedia based on the morphological characteristics and sequence analysis. The fermentation parameters including temperature, pH, inoculation size, carbon source, and initial diuron concentration were also investigated for the optimization of degradation efficiency. The results indicated that strain DP8-1 was capable of degrading up to 99% diuron within 3 days under the optimal degrading condition. The study of degradation spectrum indicated that strain DP8-1 could also degrade and utilize fenuron, monuron, metobromuron, isoproturon, chlorbromuron, linuron, and chlortoluron as substrate for strain growth. On basis of liquid chromatography-mass spectrometry analysis for the products of the degradation of diuron, strain DP8-1 metabolized diuron to produce N-(3,4-dichlorophenyl)-urea and N-(3,4-dichlorophenyl)-N-methylurea through sequential N-dealkylations. In a soil bioaugmentation experiment, the inoculation of strain DP8-1 into diuron-treated soil effectively enhanced the disappearance rate of diuron.


Assuntos
Biodegradação Ambiental , Diurona/metabolismo , Neurospora/metabolismo , Saccharum/microbiologia , Poluentes do Solo/metabolismo , Cromatografia Líquida , Espectrometria de Massas
8.
Bioresour Technol ; 212: 82-91, 2016 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-27089425

RESUMO

Sugarcane bagasse (SB) is a potential feedstock for butanol production. However, biological production of butanol from SB is less economically viable. In this study, evaluation of eight pretreatments on SB showed that alkali pretreatment efficiently removed lignin from SB while retaining the intact native structure of the released microfibrils. In total, 99% of cellulose and 100% of hemicellulose in alkali-pretreated SB were hydrolysed by enzymes from Thermoascus aurantiacus. The hydrolysate was used to produce butanol in a fed-batch fermentation by Clostridium acetobutylicum. At 60h, 14.17 and 21.11gL(-1) of butanol and acetone-butanol-ethanol (ABE) were produced from 68.89gL(-1) of total sugars, respectively, yielding 0.22 and 0.33gg(-1) of sugars. The maximum yield of butanol and ABE reached 15.4g and 22.9g per 100g raw SB, respectively. This established process may have potential application for butanol production from SB.


Assuntos
Álcalis/farmacologia , Técnicas de Cultura Celular por Lotes/métodos , Butanóis/metabolismo , Celulose/química , Clostridium acetobutylicum/metabolismo , Fermentação , Saccharum/química , Thermoascus/enzimologia , Acetona/metabolismo , Reatores Biológicos/microbiologia , Etanol/metabolismo , Fermentação/efeitos dos fármacos , Hidrólise , Cinética , Saccharum/efeitos dos fármacos , Temperatura , Fatores de Tempo
9.
Artigo em Inglês | MEDLINE | ID: mdl-22510489

RESUMO

In this paper, Ni (II) reacting with captopril (CPT) can form complex in alkaline solution and the formed complex has a characteristic absorption peak at 340nm. The absorbance of the Ni-CPT complex increases linearly with the increased concentration of captopril. The study also shows that ammonia has an obvious sensitizing effect on the absorbance. Based on the study, a new method for the determination of captopril is established. Experimental results show that the linear range of this method under optimum condition is 1.0-60mg/L with correlation coefficient, detection limit and precision of 0.9999, 0.31mg/L and 0.87%, respectively. The method used to determine captopril in commercial captopril tablets has a satisfactory result with the recoveries in the range of 99.0-103.6% and the relative standard deviation (RSD) in the range of 0.8-3.7%. We preliminarily study the reaction mechanism and demonstrate that the complex ratio of Ni (II) with captopril is 1:2 and the formation constant is 6.3×10(9).


Assuntos
Captopril/análise , Captopril/química , Técnicas de Química Analítica/métodos , Níquel/química , Absorção , Amônia/química , Calibragem , Captopril/urina , Humanos , Concentração de Íons de Hidrogênio , Indicadores e Reagentes , Preparações Farmacêuticas/química , Soluções , Solventes , Espectrofotometria Infravermelho , Espectrofotometria Ultravioleta , Temperatura , Fatores de Tempo
10.
Folia Microbiol (Praha) ; 57(2): 139-47, 2012 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-22388979

RESUMO

The pyrazosulfuron-ethyl-degrading bacterium, designated as CW17, was isolated from contaminated soil near the warehouse of the factory producing pyrazosulfuron-ethyl in Changsha city, China. The strain CW17 was identified as Acinetobacter sp. based on analyses of 94 carbon source utilization or chemical sensitivity in Biolog microplates, conventional phenotypic characteristics, and 16S rRNA gene sequencing. When pyrazosulfuron-ethyl was provided as the sole carbon source, the effects of pyrazosulfuron-ethyl concentration, pH, and temperature on biodegradation were examined. The degradation rates of pyrazosulfuron-ethyl at initial concentrations of 5.0, 20.0, and 50.0 mg/L were 48.0%, 77.0%, and 32.6%, respectively, after inoculation for 7 days. The growth of the strain was inhibited at low pH buffers. The chemical degradation occurs much faster at low pH than at neutral and basic pH conditions. The degradation rate of pyrazosulfuron-ethyl at 30°C was faster than those at 20 and 37°C by CW17 strains. Two metabolites of degradation were analyzed by liquid chromatography-mass spectroscopy (LC/MS). Based on the identified products, strain CW17 seemed to be able to degrade pyrazosulfuron-ethyl by cleavage of the sulfonylurea bridge.


Assuntos
Acinetobacter/isolamento & purificação , Acinetobacter/metabolismo , Herbicidas/metabolismo , Pirazóis/metabolismo , Pirimidinas/metabolismo , Acinetobacter/genética , Biodegradação Ambiental , China , Dados de Sequência Molecular , Filogenia , Microbiologia do Solo
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa