RESUMO
The emergence of underwater acoustic networks has greatly improved the potential capabilities of marine environment detection. In underwater acoustic network applications, node location is a basic and important task, and node location information is the guarantee for the completion of various underwater tasks. Most of the current underwater positioning models do not consider the influence of the uneven underwater medium or the uncertainty of the position of the network beacon modem, which will reduce the accuracy of the positioning results. This paper proposes an underwater acoustic network positioning method based on spatial-temporal self-calibration. This method can automatically calibrate the space position of the beacon modem using only the GPS position and depth sensor information obtained in real-time. Under the asynchronous system, the influence of the inhomogeneity of the underwater medium is analyzed, and the unscented Kalman algorithm is used to estimate the position of underwater mobile nodes. Finally, the effectiveness of this method is verified by simulation and sea trials.
Assuntos
Redes de Comunicação de Computadores , Transdutores , Acústica , Calibragem , Desenho de Equipamento , Análise de Falha de EquipamentoRESUMO
The extensive spread of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) throughout China in late 2022 has underscored the correlation between this virus and severe psychiatric disorders. Nevertheless, there remains a dearth of reported corresponding clinical and pathological features. Accordingly, we retrospectively reviewed the electronic medical records of psychiatric inpatients for seven days from early January 2023. Twenty-one inpatients who developed first-episode psychiatric disorders within two weeks after SARS-CoV-2 infection were recruited, while 24 uninfected the first-episode psychiatric inpatients were selected as controls. Comparative analyses of clinical manifestations, routine laboratory, and imaging examinations were performed. Our investigation revealed a 330% increase in first-episode psychiatric inpatients incidence after SARS-CoV-2 infection in 2023 compared to the preceding year without infections. Most cases exhibited psychiatric symptoms within a week of infection, resolving about two weeks with no residual symptoms after a three month. One-way ANOVA analysis between inpatients characterized by psychotic symptoms and hyperthermia was significant. Infected inpatients displayed elevated cytokine levels of interleukin-4, interleukin-8, and interferon-α, and decreased levels of eosinophils and basophils. These finding suggested that SARS-CoV-2 may contribute to the development of psychiatric disorders, likely mediated by the virus-induced inflammatory response and neuronal dysfunction in the context of psychological distress.
RESUMO
BACKGROUND: Emotional lability (EL)-a transdiagnostic feature characterized by rapid emotional shifts-contributes significantly to functional impairment across psychiatric disorders, such as depression, bipolar disorder, and schizophrenia. Despite its clinical significance, its etiology remains poorly understood, hindering effective screening and interventions. Growing evidence suggests that metabolic alterations may play a crucial role in the pathophysiology of psychiatric disorders. METHODS: A comprehensive Mendelian randomization (MR) design incorporated summary-level data from extensive genome-wide association studies (GWAS) on serum metabolites (8299 European participants) and EL (3268 European samples) to investigate causal associations between genetically determined metabolite levels and EL. Assumptions of instrumental variables, heterogeneity, horizontal pleiotropy, and directionality were assessed alongside sensitivity analyses. RESULTS: Out of 1400 metabolites and ratios analyzed, 30 metabolites demonstrated causal associations with an increased risk of EL based on the inverse-variance weighted method. Sensitivity analyses identified three potential causal metabolites: hydrocinnamate (OR: 1.277, CI: 1.071-1.522, P = 0.0063), which is associated with an increased risk, while glycolithocholate (OR: 0.779, CI: 0.667-0.911, P = 0.0017) and 3ß-hydroxy-5-cholenoic acid (OR: 0.857, CI: 0.756-0.971, P = 0.015) are associated with a decreased risk. CONCLUSION: This MR study supports a causal link between hydrocinnamate, glycolithocholate, and 3ß-hydroxy-5-cholenoic acid levels and the incidence of EL, offering potential metabolic biomarkers and therapeutic targets for EL in psychiatric disorders.
RESUMO
To seed lethal secondary lesions, circulating tumor cells (CTCs) must survive all rate-limiting factors during hematogenous dissemination, including fluid shear stress (FSS) that poses a grand challenge to their survival. We thus hypothesized that CTCs with the ability to survive FSS in vasculature might hold metastasis-initiating competence. This study reported that FSS of physiologic magnitude selected a small subpopulation of suspended tumor cells in vitro with the traits of metastasis-initiating cells, including stemness, migration/invasion potential, cellular plasticity, and biophysical properties. These shear-selected cells generated local and metastatic tumors at the primary and distal sites efficiently, implicating their metastasis competence. Mechanistically, FSS activated the mechanosensitive protein CXCR4 and the downstream PI3K/AKT signaling, which were essential in shear-mediated selection of metastasis-competent CTCs. In summary, these findings conclude that CTCs with metastasis-initiating competence survive FSS during hematogenous dissemination through CXCR4-PI3K/AKT signaling, which may provide new therapeutic targets for the early prevention of tumor metastasis.
Assuntos
Células Neoplásicas Circulantes , Transdução de Sinais , Animais , Feminino , Humanos , Camundongos , Linhagem Celular Tumoral , Movimento Celular , Metástase Neoplásica , Células Neoplásicas Circulantes/metabolismo , Células Neoplásicas Circulantes/patologia , Fosfatidilinositol 3-Quinases/metabolismo , Proteínas Proto-Oncogênicas c-akt/metabolismo , Receptores CXCR4/metabolismo , Estresse MecânicoRESUMO
The discovery of key epigenetic modifications in cancer is of great significance for the study of disease biomarkers. Through the mining of epigenetic modification data relevant to cancer, some researches on epigenetic modifications are accumulating. In order to make it easier to integrate the effects of key epigenetic modifications on the related cancers, we established CancerMHL (http://www.positionprediction.cn/), which provide key DNA methylation, histone modifications and lncRNAs as well as the effect of these key epigenetic modifications on gene expression in several cancers. To facilitate data retrieval, CancerMHL offers flexible query options and filters, allowing users to access specific key epigenetic modifications according to their own needs. In addition, based on the epigenetic modification data, three online prediction tools had been offered in CancerMHL for users. CancerMHL will be a useful resource platform for further exploring novel and potential biomarkers and therapeutic targets in cancer. Database URL: http://www.positionprediction.cn/.
Assuntos
Neoplasias , RNA Longo não Codificante , Humanos , Código das Histonas , RNA Longo não Codificante/genética , Metilação de DNA/genética , Neoplasias/genética , BiomarcadoresRESUMO
Tumor cells progressively remodel cytoskeletal structures and reduce cellular stiffness during tumor progression, implicating the correlation between cell mechanics and malignancy. However, the roles of tumor cell cytoskeleton and the mechanics in tumor progression remain incompletely understood. We report that softening/stiffening tumor cells by targeting actomyosin promotes/suppresses self-renewal in vitro and tumorigenic potential in vivo. Weakening/strengthening actin cytoskeleton impairs/reinforces the interaction between adenomatous polyposis coli (APC) and ß-catenin, which facilitates ß-catenin nuclear/cytoplasmic localization. Nuclear ß-catenin binds to the promoter of Oct4, which enhances its transcription that is crucial in sustaining self-renewal and malignancy. These results demonstrate that the mechanics of tumor cells dictate self-renewal through cytoskeleton-APC-Wnt/ß-catenin-Oct4 signaling, which are correlated with tumor differentiation and patient survival. This study unveils an uncovered regulatory role of cell mechanics in self-renewal and malignancy, and identifies tumor cell mechanics as a hallmark not only for cancer diagnosis but also for mechanotargeting.
RESUMO
As the driving force of tumor progression, cancer stem cells (CSCs) hold much lower cellular stiffness than bulk tumor cells across many cancer types. However, it remains unclear whether low cell stiffness can be harnessed in nanoparticle-based therapeutics for CSC targeting. We report that breast CSCs exhibit much lower stiffness but considerably higher uptake of nitrogen-doped graphene quantum dots (N-GQDs) than bulk tumor cells. Softening/stiffening cells enhances/suppresses nanoparticle uptake through activating/inhibiting clathrin- and caveolae-mediated endocytosis, suggesting that low cell stiffness mediates the elevated uptake in soft CSCs that may lead to the specific elimination. Further, soft CSCs enhance drug release, cellular retention, and nuclear accumulation of drug-loaded N-GQDs by reducing intracellular pH and exocytosis. Remarkably, drug-loaded N-GQDs specifically eliminate soft CSCs both in vitro and in vivo, inhibit tumor but not animal growth, and reduce the tumorigenicity of xenograft cells. Our findings unveil a new mechanism by which low cellular stiffness can be harnessed in nanoparticle-based strategies for specific CSC elimination, opening a new paradigm of cancer mechanomedicine. STATEMENT OF SIGNIFICANCE: Low cell stiffness is associated with high malignancy of tumor cells and thus serves as a mechanical hallmark of CSCs. However, it remains unclear whether cellular stiffness can be exploited for specific targeting of soft CSCs. This work reports that soft CSCs exhibit high N-GQD uptake compared to stiff tumor cells, which is regulated by cellular stiffness. Further, soft CSCs have enhanced drug release, cellular retention, and nuclear accumulation of drug-loaded N-GQDs, which enable the specific elimination of malignant CSCs both in vitro and in vivo with minimal side effect. In summary, our study demonstrates that CSC's low stiffness can be harnessed as a mechanical target for specific eradication, which provides a new paradigm of cancer mechanomedicine.
Assuntos
Nanopartículas , Neoplasias , Pontos Quânticos , Linhagem Celular Tumoral , Liberação Controlada de Fármacos , Células-Tronco NeoplásicasRESUMO
Thermostable Newcastle disease virus (NDV) vaccines have been widely used in areas where a "cold-chain" is not reliable. However, the molecular mechanism of NDV thermostability remains poorly understood. In this work, we constructed chimeric viruses by exchanging viral fusion (F) and/or hemagglutinin-neuraminidase (HN) genes between the heat-resistant strain HR09 and thermolabile strain La Sota utilizing a reverse genetic system. The results showed that only chimeras with HN derived from the thermostable virus exhibited a thermostable phenotype at 56°C. The hemagglutinin (HA) and neuraminidase (NA) activities of chimeras with HN derived from the HR09 strain were more thermostable than those containing HN from the La Sota strain. Then, we used molecular dynamics simulation at different temperatures (310 K and 330 K) to measure the HN protein of the La Sota strain. The conformation of an amino acid region (residues 315-375) was observed to fluctuate. Sequence alignment of the HN protein revealed that residues 315, 329, and 369 in the La Sota strain and thermostable strains differed. Whether the three amino acid substitutions affected viral thermostability was investigated. Three mutant viruses based on the thermolabile strain were generated by substituting one, two or three amino acids at positions 315, 369, and 329 in the HN protein. In comparison with the parental virus, the mutant viruses containing mutations S315P and I369V possessed higher thermostablity and HA titers, NA and fusion activities. Taken together, these data indicate that the HN gene of NDV is a major determinant of thermostability, and residues 315 and 369 have important effects on viral thermostability.
RESUMO
Membranous hind wings of the beetles can be folded under the elytra when they are at rest, and rotate and lift the elytra up only when they need to fly. This characteristic provides excellent flying capability and good environment adaptability. Inspired by the beetles, the new type of the bionic folding wing for the flapping wing Micro Air Vehicle (MAV) was designed. This flapping wing can be unfolded to get a sufficient lift in flight, and can be folded off flight to reduce the wing area and risk of the wing damage. The relationship between the internal pressures of the hydraulic system for the bionic wing folding varies and temperature was analyzed, the results show that the pressure within the system tends to increase with temperature, which proves the feasibility of the schematic design in theory. Stress analysis of the bionic wing was conducted, it was shown that stress distributions and deformation of the bionic wing under the positive and negative side loading are basically the same, which demonstrates that the strength of the bionic folding wing meets the requirements and further proves the feasibility of the schematic design.
Assuntos
Biônica , Desenho Assistido por Computador , Fenômenos Mecânicos , Asas de Animais , Animais , Biomimética , Desenho de Equipamento , Estresse Mecânico , TemperaturaRESUMO
Reactive adsorption desulfurization (RADS) of Fluidized Catalytically Cracked (FCC) gasoline on reduced and unreduced NiO/ZnO-Al2O3-SiO2 adsorbents was studied. Various characterizations such as powder X-ray diffraction (XRD), H2-temperature-programmed reduction (H2-TPR), the H2/O2 pulse titration (HOPT), transmission electron microscopy (TEM) and X-ray photoelectron spectroscopy (XPS) are used to evaluate the effects of hydrogen pretreatment of the adsorbents. XRD and HOPT results indicate that NiO is hard to be reduced to Ni0 under the conditions of RADS. H2-TPR shows that NiO might be reduced to Ni0 at the temperature of 598 °C, much higher than the temperature of RADS. The Ni 2p3/2 spectrum of Ni0 is not observed for the reduced adsorbent, but the main peak of Ni 2p3/2 of NiS is found for the spent adsorbent. The unreduced NiO/ZnO-Al2O3-SiO2 adsorbent performs a better desulfurization than the reduced adsorbent at the beginning of desulfurization process. NiO and Ni0 are assumed as the main active components and present a good desulfurization ability in RADS. Finally, a change in the RADS mechanism is presented and discussed.