Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 37
Filtrar
1.
Proc Natl Acad Sci U S A ; 119(30): e2123065119, 2022 07 26.
Artigo em Inglês | MEDLINE | ID: mdl-35858407

RESUMO

SARS-CoV-2, the causative agent of the COVID-19 pandemic, undergoes continuous evolution, highlighting an urgent need for development of novel antiviral therapies. Here we show a quantitative mass spectrometry-based succinylproteomics analysis of SARS-CoV-2 infection in Caco-2 cells, revealing dramatic reshape of succinylation on host and viral proteins. SARS-CoV-2 infection promotes succinylation of several key enzymes in the TCA, leading to inhibition of cellular metabolic pathways. We demonstrated that host protein succinylation is regulated by viral nonstructural protein (NSP14) through interaction with sirtuin 5 (SIRT5); overexpressed SIRT5 can effectively inhibit virus replication. We found succinylation inhibitors possess significant antiviral effects. We also found that SARS-CoV-2 nucleocapsid and membrane proteins underwent succinylation modification, which was conserved in SARS-CoV-2 and its variants. Collectively, our results uncover a regulatory mechanism of host protein posttranslational modification and cellular pathways mediated by SARS-CoV-2, which may become antiviral drug targets against COVID-19.


Assuntos
Antivirais , Tratamento Farmacológico da COVID-19 , COVID-19 , Interações Hospedeiro-Patógeno , Terapia de Alvo Molecular , Processamento de Proteína Pós-Traducional , SARS-CoV-2 , Antivirais/farmacologia , Antivirais/uso terapêutico , COVID-19/metabolismo , COVID-19/virologia , Células CACO-2 , Exorribonucleases/metabolismo , Interações Hospedeiro-Patógeno/efeitos dos fármacos , Humanos , Processamento de Proteína Pós-Traducional/efeitos dos fármacos , SARS-CoV-2/efeitos dos fármacos , SARS-CoV-2/fisiologia , Sirtuínas/metabolismo , Succinatos/metabolismo , Proteínas não Estruturais Virais/metabolismo , Replicação Viral/efeitos dos fármacos
2.
J Virol ; 97(3): e0174322, 2023 03 30.
Artigo em Inglês | MEDLINE | ID: mdl-36877044

RESUMO

Type III interferons (IFNLs) have critical roles in the host's innate immune system, also serving as the first line against pathogenic infections of mucosal surfaces. In mammals, several IFNLs have been reported; however, only limited data on the repertoire of IFNLs in avian species is available. Previous studies showed only one member in chicken (chIFNL3). Herein, we identified a novel chicken IFNL for the first time, termed chIFNL3a, which contains 354 bp, and encodes 118 amino acids. The predicted protein is 57.1% amino acid identity with chIFNL. Genetic, evolutionary, and sequence analyses indicated that the new open reading frame (ORF) groups with type III chicken IFNs represent a novel splice variant. Compared to IFNs from different species, the new ORF is clustered within the type III IFNs group. Further study showed that chIFNL3a could activate a panel of IFN-regulated genes and function mediated by the IFNL receptor, and chIFNL3a markedly inhibited the replication of Newcastle disease virus (NDV) and influenza virus in vitro. These data collectively shed light on the repertoire of IFNs in avian species and provide useful information that further elucidate the interaction of the chIFNLs and viral infection of poultry. IMPORTANCE Interferons (IFNs) are critical soluble factors in the immune system, and are composed of 3 types (I, II, and III) that utilize different receptor complexes (IFN-αR1/IFN-αR2, IFN-γR1/IFN-γR2, and IFN-λR1/IL-10R2, respectively). Herein, we identified IFNL from the genomic sequences of chicken and termed it chIFNL3a, located on chromosome 7 of chicken. Phylogenetically clustered with all known types of chicken IFNs, the finding of this IFN is considered a type III IFN. To further evaluate the biological properties of chIFNL3a, the target protein was prepared by the baculovirus expression system (BES), which could markedly inhibit the replication of NDV and influenza viruses. In this study, we uncovered a new interferon lambda splice variant of chicken, termed chIFNL3a, which could inhibit viral replication in cells. Importantly, these novel findings may extend to other viruses, offering a new direction for therapeutic interventions.


Assuntos
Galinhas , Orthomyxoviridae , Animais , Interferon lambda , Antivirais/farmacologia , Interferons/metabolismo , Orthomyxoviridae/metabolismo , Vírus da Doença de Newcastle/metabolismo , Mamíferos
3.
J Virol ; 97(12): e0137623, 2023 Dec 21.
Artigo em Inglês | MEDLINE | ID: mdl-37991368

RESUMO

IMPORTANCE: Rotavirus (RV) is an important zoonosis virus, which can cause severe diarrhea and extra-intestinal infection. To date, some proteins or carbohydrates have been shown to participate in the attachment or internalization of RV, including HGBAs, Hsc70, and integrins. This study attempted to indicate whether there were other proteins that would participate in the entry of RV; thus, the RV VP4-interacting proteins were identified by proximity labeling. After analysis and verification, it was found that VIM and ACTR2 could significantly promote the proliferation of RV in intestinal cells. Through further viral binding assays after knockdown, antibody blocking, and recombinant protein overexpression, it was revealed that both VIM and ACTR2 could promote RV replication.


Assuntos
Proteína 2 Relacionada a Actina , Proteínas do Capsídeo , Mapas de Interação de Proteínas , Rotavirus , Vimentina , Animais , Humanos , Proteína 2 Relacionada a Actina/genética , Proteína 2 Relacionada a Actina/metabolismo , Proteínas do Capsídeo/metabolismo , Intestinos/citologia , Rotavirus/química , Rotavirus/metabolismo , Vimentina/genética , Vimentina/metabolismo , Internalização do Vírus , Replicação Viral , Ligação Proteica
4.
J Med Virol ; 96(3): e29491, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38402626

RESUMO

Severe fever with thrombocytopenia syndrome (SFTS) is an emerging tick-borne hemorrhagic fever disease with high fatality rate of 10%-20%. Vaccines or specific therapeutic measures remain lacking. Human interferon inducible transmembrane protein 3 (hIFITM3) is a broad-spectrum antiviral factor targeting viral entry. However, the antiviral activity of hIFITM3 against SFTS virus (SFTSV) and the functional mechanism of IFITM3 remains unclear. Here we demonstrate that endogenous IFITM3 provides protection against SFTSV infection and participates in the anti-SFTSV effect of type Ⅰ and Ⅲ interferons (IFNs). IFITM3 overexpression exhibits anti-SFTSV function by blocking Gn/Gc-mediated viral entry and fusion. Further studies showed that IFITM3 binds SFTSV Gc directly and its intramembrane domain (IMD) is responsible for this interaction and restriction of SFTSV entry. Mutation of two neighboring cysteines on IMD weakens IFITM3-Gc interaction and attenuates the antiviral activity of IFITM3, suggesting that IFITM3-Gc interaction may partly mediate the inhibition of SFTSV entry. Overall, our data demonstrate for the first time that hIFITM3 plays a critical role in the IFNs-mediated anti-SFTSV response, and uncover a novel mechanism of IFITM3 restriction of SFTSV infection, highlighting the potential of clinical intervention on SFTS disease.


Assuntos
Fatores de Restrição Antivirais , Infecções por Bunyaviridae , Febre Grave com Síndrome de Trombocitopenia , Humanos , Infecções por Bunyaviridae/imunologia , Proteínas de Membrana/imunologia , Phlebovirus , Proteínas de Ligação a RNA/imunologia , Febre Grave com Síndrome de Trombocitopenia/imunologia , Proteínas Virais/metabolismo , Internalização do Vírus , Fatores de Restrição Antivirais/imunologia
5.
Int J Mol Sci ; 25(7)2024 Apr 08.
Artigo em Inglês | MEDLINE | ID: mdl-38612921

RESUMO

Nipah virus (NiV) is a highly lethal zoonotic virus with a potential large-scale outbreak, which poses a great threat to world health and security. In order to explore more potential factors associated with NiV, a proximity labeling method was applied to investigate the F, G, and host protein interactions systematically. We screened 1996 and 1524 high-confidence host proteins that interacted with the NiV fusion (F) glycoprotein and attachment (G) glycoprotein in HEK293T cells by proximity labeling technology, and 863 of them interacted with both F and G. The results of GO and KEGG enrichment analysis showed that most of these host proteins were involved in cellular processes, molecular binding, endocytosis, tight junction, and other functions. Cytoscape software (v3.9.1) was used for visual analysis, and the results showed that Cortactin (CTTN), Serpine mRNA binding protein 1 (SERBP1), and stathmin 1 (STMN1) were the top 20 proteins and interacted with F and G, and were selected for further validation. We observed colocalization of F-CTTN, F-SERBP1, F-STMN1, G-CTTN, G-SERBP1, and G-STMN1 using confocal fluorescence microscopy, and the results showed that CTTN, SERBP1, and STMN1 overlapped with NiV F and NiV G in HEK293T cells. Further studies found that CTTN can significantly inhibit the infection of the Nipah pseudovirus (NiVpv) into host cells, while SERBP1 and STMN1 had no significant effect on pseudovirus infection. In addition, CTTN can also inhibit the infection of the Hendra pseudovirus (HeVpv) in 293T cells. In summary, this study revealed that the potential host proteins interacted with NiV F and G and demonstrated that CTTN could inhibit NiVpv and HeVpv infection, providing new evidence and targets for the study of drugs against these diseases.


Assuntos
Vírus Nipah , Humanos , Cortactina , Células HEK293 , Endocitose , Glicoproteínas
6.
J Virol ; 96(6): e0189721, 2022 03 23.
Artigo em Inglês | MEDLINE | ID: mdl-35045269

RESUMO

Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) spike (S) glycoprotein mediates viral entry and membrane fusion. Its cleavage at S1/S2 and S2' sites during the biosynthesis in virus producer cells and viral entry are critical for viral infection and transmission. In contrast, the biological significance of the junction region between both cleavage sites for S protein synthesis and function is less understood. By analyzing the conservation and structure of S protein, we found that intrachain contacts formed by the conserved tyrosine (Y) residue 756 (Y756) with three α-helices contribute to the spike's conformational stability. When Y756 is mutated to an amino acid residue that can provide hydrogen bonds, S protein could be expressed as a cleaved form, but not vice versa. Also, the L753 mutation linked to the Y756 hydrogen bond prevents the S protein from being cleaved. Y756 and L753 mutations alter S protein subcellular localization. Importantly, Y756 and L753 mutations are demonstrated to reduce the infectivity of the SARS-CoV-2 pseudoviruses by interfering with the incorporation of S protein into pseudovirus particles and causing the pseudoviruses to lose their sensitivity to neutralizing antibodies. Furthermore, both mutations affect the assembly and production of SARS-CoV-2 virus-like particles in cell culture. Together, our findings reveal for the first time a critical role for the conserved L753-LQ-Y756 motif between S1/S2 and S2' cleavage sites in S protein synthesis and processing as well as virus assembly and infection. IMPORTANCE The continuous emergence of SARS-CoV-2 variants such as the delta or lambda lineage caused the continuation of the COVID-19 epidemic and challenged the effectiveness of the existing vaccines. Logically, the spike (S) protein mutation has attracted much concern. However, the key amino acids in S protein for its structure and function are still not very clear. In this study, we discovered for the first time that the conserved residues Y756 and L753 at the junction between the S1/S2 and S2' sites are very important, like the S2' cleavage site R815, for the synthesis and processing of S protein such as protease cleavage, and that the mutations severely interfered with the incorporation of S protein into pseudotyped virus particles and SARS-CoV-2 virus-like particles. Consequently, we delineate the novel potential target for the design of broad-spectrum antiviral drugs in the future, especially in the emergence of SARS-CoV-2 variants.


Assuntos
COVID-19 , SARS-CoV-2 , Glicoproteína da Espícula de Coronavírus , Vírion , Motivos de Aminoácidos/genética , COVID-19/virologia , Humanos , Mutação , SARS-CoV-2/genética , SARS-CoV-2/metabolismo , Glicoproteína da Espícula de Coronavírus/metabolismo , Vírion/metabolismo , Internalização do Vírus
7.
J Med Virol ; 95(10): e29140, 2023 10.
Artigo em Inglês | MEDLINE | ID: mdl-37800627

RESUMO

The epidemic of Mpox virus (MPXV) from May 2022 was once declared as a Public Health Emergency of International Concern by the World Health Organization. Vaccines play an important role in prevention of infectious diseases, and mRNA vaccine technology was proved to be a safe and effective platform with successful application in defense of coronavirus disease 2019. In this study, based on A29L, M1R, A35R, and B6R of MPXV, we developed two MPXV mRNA vaccine candidates, designated as MPXfus and MPXmix. The MPXfus was one-component, in which these four antigen proteins were linked in tandem by flexible linker and encoded by an individual mRNA as a fusion protein. The MPXmix was multicomponent containing four mRNA, and each mRNA encoded one antigen protein respectively. Mice were immunized with equal quality of MPXfus or MPXmix, delivered by lipid nanoparticles for evaluation and comparison of the immune responses induced by these two MPXV vaccine candidates. Results of immune response analyses indicated that both MPXfus and MPXmix could elicit high-level of antigen-specific antibodies and robust cellular immune response in mice. Moreover, results of virus neutralization assays suggested that sera from MPXfus- or MPXmix-immunized mice possessed high neutralizing activities against vaccinia virus. In addition, titers of antigen-specific antibody, levels of cellular immune response, and activities of neutralizing antibody against vaccinia virus induced by MPXfus and MPXmix presented no significant difference. In summary, this study provides valuable insights for further clinical development of one-component and multicomponent mRNA vaccine candidates for the prevention of MPXV and other orthomyxoviruses.


Assuntos
Mpox , Animais , Camundongos , Anticorpos Neutralizantes , Vaccinia virus/genética , Imunidade Celular , RNA Mensageiro/genética , Anticorpos Antivirais
8.
Acta Pharmacol Sin ; 43(8): 1905-1915, 2022 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-34873317

RESUMO

Virus-induced cell death has long been thought of as a double-edged sword in the inhibition or exacerbation of viral infections. The vital role of iron, an essential element for various enzymes in the maintenance of cellular physiology and efficient viral replication, places it at the crossroads and makes it a micronutrient of competition between the viruses and the host. Viruses can interrupt iron uptake and the antioxidant response system, while others can utilize iron transporter proteins as receptors. Interestingly, the unavailability of iron facilitates certain viral infections and causes cell death characterized by lipid peroxide accumulation and malfunction of the antioxidant system. In this review, we discuss how iron uptake, regulation and metabolism, including the redistribution of iron in the host defense system during viral infection, can induce ferroptosis. Fenton reactions, a central characteristic of ferroptosis, are caused by the increased iron content in the cell. Therefore, viral infections that increase cellular iron content or intestinal iron absorption are likely to cause ferroptosis. In addition, we discuss the hijacking of the iron regulatoy pathway and the antioxidant response, both of which are typical in viral infections. Understanding the potential signaling mechanisms of ferroptosis in viral infections will aid in the development of new therapeutic agents.


Assuntos
Ferroptose , Viroses , Antioxidantes/metabolismo , Antioxidantes/uso terapêutico , Morte Celular , Humanos , Ferro/metabolismo , Peroxidação de Lipídeos
9.
Mediators Inflamm ; 2018: 8982756, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-30647537

RESUMO

Strong inflammation is a prominent pathogenesis of acute hepatitis, which can induce hepatocyte death and lead to liver failure. Lepidium meyenii Walp (Maca) is a traditional herbal medicine mostly used in improving sperm motility and serum hormone levels, etc. However, there are no reports that showed Maca was designed for treating hepatitis so far. Therefore, the protective effects and pharmacological mechanisms of Maca are unknown in hepatitis. In this study, we found that the protective effects of Maca extract ameliorate ConA-induced acute hepatitis (CIH) and underlying mechanisms. We determined that pretreatment with Maca extract significantly suppressed the production of aminotransferases and inflammatory cytokines, including IFN-γ, TNF-α, IL-1ß, IL-2, IL-6, IL-12, and IL-17a, and moderated acute liver injury in CIH. Maca recruited more myeloid-derived suppressor cells (MDSCs) to the liver and suppressed infiltration of natural killer T cells (NKT cells) and macrophages in the liver. Furthermore, our data indicated the molecular mechanism of the inhibitory inflammatory effects of Maca, which should suppress the activation of NF-κB, IFN-γ/STAT1, and IL-6/STAT3 signalings. Collectively, this present research explores Maca as an effective hepatoprotective medicine to inhibit inflammation and liver injury caused by acute hepatitis.


Assuntos
Anti-Inflamatórios/uso terapêutico , Concanavalina A/toxicidade , Hepatite/tratamento farmacológico , Hepatite/etiologia , Lepidium/química , Extratos Vegetais/uso terapêutico , Animais , Feminino , Medicina Tradicional/métodos , Camundongos , Camundongos Endogâmicos BALB C , NF-kappa B/metabolismo , Motilidade dos Espermatozoides/efeitos dos fármacos
10.
Indian J Microbiol ; 58(3): 345-352, 2018 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-30013279

RESUMO

Given the failures of past HIV-1 vaccine clinical trials, potential HIV-1 vaccine candidates should be rigorously screened in preclinical models including simian immunodeficiency virus (SIV) primate models and small animal models. In this study, we tested the immunogenicity of a recombinant fowlpox virus (rFPV) expressing the SIV gag and SIV envT (rFPVsg-se) proteins in BALB/c mice, to establish a foundation for further development. rFPVsg-se was constructed through homologous recombination techniques and purified through plaque screening assays using enhanced green fluorescent protein as the reporter gene. The integration, transcription, and translation of the SIV genes were measured by PCR (genomic DNA), RT-PCR (RNA), Western-blot, respectively. The levels of SIV-specific antibodies were assessed by ELISA following a single immunization (n = 18/group) or a prime-boost strategy (n = 24/group) with rFPVsg-se and compared to FPV and PBS controls. Residual virus was measured in distant organs following immunization using PCR. SIV-specific IgG titers against gag and gp120 were detected following single vaccination and the prime-boost. As expected the titers were higher following the prime-boost approach. The levels of Gag- and gp120-specific antibodies were significantly higher than controls (p < 0.01) 14 days after the booster immunization. Residual rFPVSg-Se was detected in the muscle at the site of injection, but not in distant organs, from day 1-7 post immunization. In summary, rFPVsg-se induced high levels of SIV-specific antibodies suggesting it may be a viable candidate for further development.

11.
BMC Microbiol ; 17(1): 130, 2017 06 02.
Artigo em Inglês | MEDLINE | ID: mdl-28577529

RESUMO

BACKGROUND: Staphylococcus aureus is an important pathogen that causes various infections in medical facilities. However, resistance to multiple drugs has made this infection difficult to manage. Thus, new therapeutic strategies are urgently needed to solve this worldwide public health problem. The Streptococcus lactis L16 strain was isolated from the fermented hot chili sauce. To explore whether it can be used as a protective agent against S. aureus infection, we designed a mouse model of S. aureus infection to evaluate the therapeutic potency of S. lactis. Mice were grouped into pre-(P) and post-(T) S. aureus infection groups following oral administration of S. lactis L16. The protection and treatment effects were assessed by examining body weight, internal organ weight, serum cytokines and intestinal secretory IgA alternations. RESULT: Oral administration of the S. lactis L16 strain reduced the loss of body weight in mice post-infection and alleviated infection-induced hepatomegaly. In particular, the PL16 group (protection with L16) showed more effective resistance to S. aureus than the TL16 group (treatment with L16). The level of serum cytokine interferon gamma following oral administration of the L16 strain was remarkably increased during infection, as were interleukin-4 levels during convalescence. The probiotic L16 strain induced more sIgA production than S. aureus. CONCLUSION: Our data suggest that S. lactis L16 is an effective strain with anti-Staphylococcus activity. By regulating the Th1/Th2 response, S. lactis can effectively reduce lesions from infection, indicating its therapeutic potential in overcoming antibiotic resistance in this mouse infection model that mimics infections observed in humans.


Assuntos
Capsicum/microbiologia , Lactococcus lactis/fisiologia , Probióticos/administração & dosagem , Infecções Estafilocócicas/dietoterapia , Animais , Peso Corporal , Citocinas/metabolismo , Modelos Animais de Doenças , Feminino , Imunoglobulina A/metabolismo , Lactococcus lactis/isolamento & purificação , Camundongos , Tamanho do Órgão , Probióticos/farmacologia , Infecções Estafilocócicas/imunologia , Infecções Estafilocócicas/microbiologia , Staphylococcus aureus/patogenicidade
12.
Indian J Microbiol ; 57(2): 162-170, 2017 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-28611493

RESUMO

An HIV candidate vaccine for the Chinese population was designed by constructing a recombinant fowlpox virus expressing HIV-1 gag and HIV gp145 proteins via homologous recombination and plaque screening using enhanced green fluorescent protein (EGFP) as the reporter gene. EGFP in the recombinant was then knocked out with the Cre/Loxp system yielding rFPVHg-Hp, which was identified at the genomic, transcriptional and translational levels. The immunogenicity of rFPVHg-Hp was analyzed by measuring levels of HIV-specific antibodies and IFN-γ-secreting splenocytes by enzyme-linked immunosorbent assay and IFN enzyme-linked immune spot test in the BALB/c mouse model. Results showed that rFPV could not stimulate HIV-1 specific antibodies or IFN-γ-secreting cells by a single immunization. Meanwhile, in the prime-boost strategy, HIV-p24 antibodies (P < 0.01) and IFN-γ-secreting cells (P < 0.05) were induced strongly by the candidate vaccine after the boost immunization. Thus, both humoral and cellular immunity could be elicited by the candidate vaccine in a prime-boost immunization strategy. This study provides a foundation for future preclinical studies on the HIV rFPVHg-Hp candidate vaccine.

13.
Anaerobe ; 35(Pt B): 22-7, 2015 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-26143437

RESUMO

Here we evaluate the immunomodulatory function of two potential probiotic strains, Lactobacillus salivarius CICC 23174 and Lactobacillus plantarum CGMCC 1.557. Mice were fed with each Lactobacillus strain at different doses for several consecutive days. The effects of the two probiotic strains on immune organs, immune cells and immune molecules were investigated on days 10 and 20. Both Lactobacillus strains increased the spleen index, improved the spleen lymphocyte transformation rate, enhanced sIgA production and improved the number of CD11c(+) CD80(+) double-positive cells. L. plantarum CGMCC 1.557 was the more active strain in enhancing the phagocytic activity of macrophages, while, L. salivarius CICC 23174 was the more effective strain at maintaining the Th1/Th2 balance. This study suggests that these two Lactobacillus strains have beneficial effects on regulation of immune responses, which has promising implications for the development of ecological agents and functional foods.


Assuntos
Fatores Imunológicos/administração & dosagem , Lactobacillus/crescimento & desenvolvimento , Lactobacillus/imunologia , Probióticos/administração & dosagem , Imunidade Adaptativa , Animais , Feminino , Imunoglobulina A Secretora/sangue , Linfócitos/imunologia , Macrófagos/imunologia , Camundongos Endogâmicos BALB C , Fagocitose
14.
BMC Vet Res ; 10: 128, 2014 Jun 10.
Artigo em Inglês | MEDLINE | ID: mdl-24916952

RESUMO

BACKGROUND: The European (EU) genotype of porcine reproductive and respiratory syndrome virus (Genotype-I PRRSV) has recently emerged in China. The coexistence of Genotype-I and -II PRRSV strains could cause seriously affect PRRSV diagnosis and management. Current vaccines are not able to protect against PRRSV infection completely and have inherent drawbacks. Thus, genetically engineered vaccines, including DNA vaccine and live vector engineered vaccines, have been developed. This study aimed to determine the enhanced immune responses of mice inoculated with a DNA vaccine coexpressing GP3 and GP5 of a Genotype-I PRRSV. RESULTS: To evaluate the immunogenicity of GP3 and GP5 proteins from European-type PRRSV, three DNA vaccines, pVAX1-EU-ORF3-ORF5, pVAX1-EU-ORF3 and pVAX1-EU-ORF5, were constructed, which were based on a Genotype-I LV strain (GenBank ID: M96262). BALB/c mice were immunized with the DNA vaccines; delivered in the form of chitosan-DNA nanoparticles. To increase the efficiency of the vaccine, Quil A (Quillaja) was used as an adjuvant. GP3 and GP5-specific antibodies, neutralizing antibodies and cytokines (IL-2, IL-4, IL-10 and IFN gamma) from the immunized mice sera, and other immune parameters, were examined, including T-cell proliferation responses and subgroups of spleen T-lymphocytes. The results showed that ORF3 and ORF5 proteins of Genotype-I PRRSV induced GP3 and GP5-specific antibodies that could neutralize the virus. The levels of Cytokines IL-2, IL-4, IL-10, and IFN-γ of the experimental groups were significantly higher than those of control groups after booster vaccination (P < 0.05). The production of CD3+CD4+ and CD3+CD8+ T lymphocyte was also induced. T lymphocyte proliferation assays showed that the PRRSV LV strain virus could stimulate the proliferation of T lymphocytes in mice in the experimental group. CONCLUSIONS: Using Quil A as adjuvant, Genotype-I PRRSV GP3 and GP5 proteins produced good immunogenicity and reactivity. More importantly, better PRRSV-specific neutralizing antibody titers and cell-mediated immune responses were observed in mice immunized with the DNA vaccine co-expressing GP3 and GP5 proteins than in mice immunized with a DNA vaccine expressing either protein singly. The results of this study demonstrated that co-immunization with GP3 and GP5 produced a better immune response in mice.


Assuntos
Anticorpos Antivirais/sangue , Vírus da Síndrome Respiratória e Reprodutiva Suína/metabolismo , Proteínas Virais/imunologia , Vacinas Virais/imunologia , Adjuvantes Imunológicos , Animais , Anticorpos Neutralizantes/sangue , Proliferação de Células , Quitosana , Genótipo , Interferon gama/sangue , Interleucina-2/sangue , Camundongos , Camundongos Endogâmicos BALB C , Nanopartículas , Vírus da Síndrome Respiratória e Reprodutiva Suína/imunologia , Saponinas de Quilaia , Linfócitos T/fisiologia , Vacinas de DNA/imunologia , Proteínas Virais/metabolismo
15.
Anaerobe ; 30: 1-10, 2014 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-25046742

RESUMO

This study aims to evaluate the functional and probiotic characteristics of eight indigenous Lactobacillus strains in vitro. The selected lactobacilli include strains of Lactobacillus casei subsp. casei, Lactobacillus salivarius subsp. salicinius, Lactobacillus fermentum, Lactobacillus plantarum, Lactobacillus delbrueckii subsp. lactis, Lactobacillus delbrueckii subsp. bulgaricus, and Lactobacillus rhamnosus. All strains tolerated both pH 2 for 3 h and 1% bile salt for 24 h. The strains CICC 23174 and CGMCC 1.557 were the most adhesive strains producing the highest quantity of EPS. Although a wide variation in the ability of the eight strains to deplete cholesterol and nitrite, antagonize pathogens, scavenge free radical, and stimulate innate immune response were observed, the strains CICC 23174 and CGMCC 1.557 showed the widest range of these useful traits. Taken together, the strains CICC 23174 and CGMCC 1.557 exhibited the best probiotic properties with the potential for use in the production of probiotic fermented foods.


Assuntos
Microbiologia de Alimentos , Intestinos/microbiologia , Lactobacillus/isolamento & purificação , Lactobacillus/fisiologia , Probióticos/isolamento & purificação , Ácidos/metabolismo , Antibiose , Aderência Bacteriana , Ácidos e Sais Biliares/metabolismo , Colesterol/metabolismo , Detergentes/toxicidade , Radicais Livres/metabolismo , Humanos , Concentração de Íons de Hidrogênio , Imunidade Inata , Lactobacillus/classificação , Lactobacillus/imunologia , Viabilidade Microbiana , Nitritos/metabolismo , Polissacarídeos Bacterianos/metabolismo , Fatores de Tempo
16.
Int J Biol Macromol ; 273(Pt 2): 132901, 2024 Jun 05.
Artigo em Inglês | MEDLINE | ID: mdl-38848854

RESUMO

H5-subtype avian influenza virus (AIV) is globally prevalent and undergoes frequent antigenic drift, necessitating regular updates to vaccines. One of the many influencing elements that cause incompatibility between vaccinations and epidemic strains is the dynamic alteration of glycosylation sites. However, the biological significance of N-glycosylation in the viral evolution and antigenic changes is unclear. Here, we performed a systematic analysis of glycosylation sites on the HA1 subunit of H5N1, providing insights into the changes of primary glycosylation sites, including 140 N, 156 N, and 170 N within the antigenic epitopes of HA1 protein. Multiple recombinant viruses were then generated based on HA genes of historical vaccine strains and deactivated for immunizing SPF chickens. Inactivated recombinant strains showed relatively closer antigenicity compared to which has identical N-glycosylation patterns. The N-glycosylation modification discrepancy highlights the inter-branch antigenic diversity of H5-subtype viruses in avian influenza and serves as a vital foundation for improving vaccination tactics.

17.
Vet Microbiol ; 284: 109823, 2023 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-37392666

RESUMO

Rabies, which caused by rabies virus (RABV), is a zoonotic and life-threatening disease with 100% mortality, and there is no effective treatment thus far due to the unclear pathogenesis and less of treatment targets. Interferon-induced transmembrane protein 3 (IFITM3) has recently been identified as an important anti-viral host effector induced by type I interferon. However, the role of IFITM3 in RABV infection has not been elucidated. In this study, we demonstrated that IFITM3 is a crucial restriction factor for RABV, the viral-induced IFITM3 significantly inhibited RABV replication, while knockdown of IFITM3 had the opposite effect. We then identified that IFNß induces the upregulation of IFITM3 in the absence or presence of RABV infection, meanwhile, IFITM3 positively regulates RABV-triggered production of IFNß in a feedback manner. In-depth research we found that IFITM3 not only inhibits the virus absorb and entry, but also inhibits viral replication through mTORC1-dependent autophagy. All these findings broaden our understanding of IFITM3 function and uncover a novel mechanism against RABV infection.


Assuntos
Interferon Tipo I , Vírus da Raiva , Raiva , Animais , Raiva/veterinária , Internalização do Vírus , Replicação Viral , Interferon Tipo I/metabolismo , Autofagia
18.
Virus Res ; 336: 199218, 2023 Oct 15.
Artigo em Inglês | MEDLINE | ID: mdl-37678517

RESUMO

Avipoxvirus 282E4 strain was extensively applied into recombinant vaccine vector to prevent other infectious diseases. However, little information on the genomic background, functional and genetic evolutionary of the isolate 282E4 strain was clarified. The results showed that the linear genome of avipoxvirus 282E4 was 308,826 bp, containing 313 open reading frames (ORFs) and 12 new predicted ORFs. The 282E4 strain appears to encode two novel thymidine kinase proteins and two TGF-beta-like proteins that may be associated with the suppression of the host's antiviral response. Avipoxvirus 282E4 also encodes 57 ankyrin repeat proteins and 5 variola B22R-like proteins, which composed 7% of the avipoxvirus 282E4 genome. GO and KEGG analysis further revealed that 12 ORFs participate in viral transcription process, 7 ORFs may function during DNA repair, replication and biological synthesis, and ORF 208 is involved in the process of virus life cycle. Interestingly, phylogenetic analysis based on concatenated sequences p4b and DNA polymerase of avipoxviruses gene demonstrates that avipoxvirus 282E4 strain is divergent from known FWPV isolates and is similar to shearwater poxvirus (SWPV-1) that belongs to the CNPV-like virus. Sequencing avipoxvirus 282E4 is a significant step to judge the genetic position of avipoxviruses within the larger Poxviridae phylogenetic tree and provide a new insight into the genetic background of avipoxvirus 282E4 and interspecies transmission of poxviruses, meanwhile, explanation of gene function provides theoretical foundation for vaccine design with 282E4 strain as skeleton.

19.
Vaccines (Basel) ; 11(9)2023 Aug 25.
Artigo em Inglês | MEDLINE | ID: mdl-37766097

RESUMO

With no specific antiviral drugs and preventive vaccines against Mpox virus (MPXV), the epidemic has led to the declaration of a Public Health Emergency of International Concern. As a developmental direction for new vaccines, studies of subunit vaccines based upon MPXV antigen proteins are lacking. In this study, A29L, M1R, A35R, and B6R of MPXV were expressed and purified from a prokaryotic system. The four MPXV antigen proteins in combination were mixed with aluminum hydroxide or CpG7909 as adjuvant, and subsequently used to inoculate mice. The results of enzyme-linked immunosorbent assay (ELISA), flow cytometry analyses, and enzyme-linked immunospot (ELISPOT) assays indicated that A29L, M1R, A35R, and B6R elicited high-level antigen-specific antibodies and CD4+ T cells-based cellular immune response in mice. Moreover, the results of virus neutralization assays suggested that sera from the mice immunized with four proteins elicited high neutralizing activities against the vaccinia virus. Notably, the results of ELISA, ELISPOT, and virus neutralization assays also showed that the CpG7909 adjuvant was more effective in inducing an immune response compared with the aluminum adjuvant. In summary, this study offers valuable insights for further studies of subunit vaccine candidates for the prevention of MPXV and other orthomyxoviruses.

20.
Nat Commun ; 14(1): 6333, 2023 10 10.
Artigo em Inglês | MEDLINE | ID: mdl-37816705

RESUMO

The severe fever with thrombocytopenia syndrome virus (SFTSV) is a tick-borne human-infecting bunyavirus, which utilizes two envelope glycoproteins, Gn and Gc, to enter host cells. However, the structure and organization of these glycoproteins on virion surface are not yet known. Here we describe the structure of SFTSV determined by single particle reconstruction, which allows mechanistic insights into bunyavirus assembly at near-atomic resolution. The SFTSV Gn and Gc proteins exist as heterodimers and further assemble into pentameric and hexameric peplomers, shielding the Gc fusion loops by both intra- and inter-heterodimer interactions. Individual peplomers are associated mainly through the ectodomains, in which the highly conserved glycans on N914 of Gc play a crucial role. This elaborate assembly stabilizes Gc in the metastable prefusion conformation and creates some cryptic epitopes that are only accessible in the intermediate states during virus entry. These findings provide an important basis for developing vaccines and therapeutic drugs.


Assuntos
Orthobunyavirus , Phlebovirus , Febre Grave com Síndrome de Trombocitopenia , Humanos , Proteínas do Envelope Viral/metabolismo , Microscopia Crioeletrônica , Glicoproteínas/metabolismo
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa