Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
Intervalo de ano de publicação
1.
J Hazard Mater ; 459: 132242, 2023 Oct 05.
Artigo em Inglês | MEDLINE | ID: mdl-37562355

RESUMO

Due to the limitations of the conventional refinery methods, development of a new method such as oxidative denitrogenation (ODN) is highly desirable. This study described a novel ODN to remove organo-nitrogenous compounds (ONCs) in liquid fuel by ascorbic acid (AscH2) and H2O2 redox system under ambient conditions. Seven ONCs including pyridine, quinoline, acridine, 7,8-benzoquinoline, indole, N-methylpyrrolidone (NMP), and N,N-dimethylformamide (DMF) were chosen to assess the fuel-denitrified ability of the AscH2/H2O2 system. The results showed that the basic group of ONCs (pyridine, quinoline, and acridine) can be effectively removed (removal ratio > 95 %) while the removal efficiency of water-soluble compounds (7,8-benzoquinoline, NMP, and DMF) was moderate (61-68 %) under a mild temperature (30 °C) and atmospheric pressure. Free radical quenching and electron paramagnetic resonance experiments confirmed that hydroxyl and AscH2 radicals played a major role in the degradation of ONCs. The degraded products of quinoline were analyzed by gas chromatography-mass spectroscopy and ion chromatography. Based on the identified intermediate products, a putative reaction pathway majorly involving three steps of N-onium formation, transfer hydrogenation, and free radical oxidative ring-opening was suggested for the quinoline degradation. The presented approach can be performed at a normal temperature and pressure and will live up to expectations in the pre-denitrogenation and selective removal of basic ONCs in fuel oils.

2.
Sci Total Environ ; 837: 155791, 2022 Sep 01.
Artigo em Inglês | MEDLINE | ID: mdl-35561923

RESUMO

FeS nanoparticles loaded on nitrogen-doped biochar (FeS/BNC) were fabricated by pyrolyzing coffee husks pretreated with Mohr's salt. The nitrogen doping and FeS loading of biochar are simultaneously achieved in one-pot pyrolysis. The elemental analysis, SEM, TEM, XRD, XPS, Raman, FTIR and N2 adsorption-desorption technologies were used to characterize the composition and structure of FeS/NBC. The appraisement for removing aqueous Cr(VI) testified that FeS/NBC offered a synergistic scavenging effect of Cr(VI) by FeS and NBC. The effect of crucial experimental conditions (FeS/NBC dosage, foreign ions, initial pH and concentration of Cr(VI) solution) were investigated. The Cr(VI) removal capacity was as high as 211.3 ± 26 mg g-1 under the optimized condition. The practicability of FeS/NBC was examined by using simulated actual samples from tap water and lake water. The mechanism examination showed that surface adsorption/reduction and solution reduction were implicated in the removal of Cr(VI). The current work introduces a novel FeS/NBC composite prepared by an in situ pyrolysis method with excellent potential for chromium pollution remediation.


Assuntos
Poluentes Químicos da Água , Adsorção , Carvão Vegetal/química , Cromo/análise , Compostos Ferrosos , Nitrogênio/análise , Água , Poluentes Químicos da Água/análise
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa