Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 226
Filtrar
1.
Small ; 20(10): e2306905, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-37880861

RESUMO

The efficacy of immune checkpoint blockade (ICB) in promoting an immune response against tumors still encounters challenges such as low response rates and off-target effects. Pyroptosis, an immunogenic cell death (ICD) mechanism, holds the potential to overcome the limitations of ICB by activating and recruiting immune cells. However, the expression of the pyroptosis-related protein Gasdermin-E(GSDME) in some tumors is limited due to mRNA methylation. To overcome this obstacle, sialic acid-functionalized liposomes coloaded with decitabine, a demethylation drug, and triclabendazole, a pyroptosis-inducing drug are developed. This nanosystem primarily accumulates at tumor sites via sialic acid and the Siglec receptor, elevating liposome accumulation in tumors up to 3.84-fold at 24 h and leading to the upregulation of pyroptosis-related proteins and caspase-3/GSDME-dependent pyroptosis. Consequently, it facilitates the infiltration of CD8+ T cells into the tumor microenvironment and enhances the efficacy of ICB therapy. The tumor inhibition rate of the treatment group is 89.1% at 21 days. This study highlights the potential of sialic acid-functionalized pyroptosis nanotuners as a promising approach for improving the efficacy of ICB therapy in tumors with low GSDME expression through epigenetic alteration and ICD.


Assuntos
Neoplasias , Piroptose , Humanos , Ácido N-Acetilneuramínico , Linfócitos T CD8-Positivos , Epigênese Genética , Imunoterapia , Lipossomos , Neoplasias/terapia , Microambiente Tumoral
2.
Mol Pharm ; 21(1): 102-112, 2024 Jan 01.
Artigo em Inglês | MEDLINE | ID: mdl-37994899

RESUMO

O-linked-N-acetylglucosaminylation (O-GlcNAcylation) plays a key role in hepatocellular carcinoma (HCC) development, and the inhibition of O-GlcNAcylation has therapeutic potential. To decrease the systemic adverse events and increase targeting, we used sialic acid (SA)-decorated liposomes loaded with OSMI-1, an inhibitor of the O-GlcNAcylation, to further improve the anti-HCC effect. Fifty pairs of HCC tissue samples and the cancer genome atlas database were used to analyze the expression of O-GlcNAc transferase (OGT) and its effects on prognosis and immune cell infiltration. OSMI-1 cells were treated with SA and liposomes. Western blotting, immunofluorescence, cell proliferation assay, flow cytometry, enzyme-linked immunosorbent assay, immunohistochemistry, and tumorigenicity assays were used to investigate the antitumor effect of SA-modified OSMI-1 liposomes in vitro and in vivo. OGT was highly expressed in HCC tissues, negatively correlated with the degree of tumor infiltration of CD8+ and CD4+T cells and prognosis, and positively correlated with the degree of Treg cell infiltration. SA-modified OSMI-1 liposome (OSMI-1-SAL) was synthesized with stable hydrodynamic size distribution. Both in vitro and in vivo, OSMI-1-SAL exhibited satisfactory biosafety and rapid uptake by HCC cells. Compared to free OSMI-1, OSMI-1-SAL had a stronger capacity for suppressing the proliferation and promoting the apoptosis of HCC cells. Moreover, OSMI-1-SAL effectively inhibited tumor initiation and development in mice. OSMI-1-SAL also promoted the release of damage-associated molecular patterns, including anticalreticulin, high-mobility-group protein B1, and adenosine triphosphate, from HCC cells and further promoted the activation and proliferation of the CD8+ and CD4+T cells. In conclusion, the OSMI-1-SAL synthesized in this study can target HCC cells, inhibit tumor proliferation, induce tumor immunogenic cell death, enhance tumor immunogenicity, and promote antitumor immune responses, which has the potential for clinical application in the future.


Assuntos
Carcinoma Hepatocelular , Neoplasias Hepáticas , Camundongos , Animais , Carcinoma Hepatocelular/genética , Lipossomos/farmacologia , Neoplasias Hepáticas/metabolismo , Ácido N-Acetilneuramínico , Proliferação de Células
3.
Mol Pharm ; 20(11): 5396-5415, 2023 11 06.
Artigo em Inglês | MEDLINE | ID: mdl-37817669

RESUMO

Over 50% of the global population suffers from hair loss. The mixed results in the treatment of hair loss reveal the limitations of conventional commercial topical drugs. One the one hand, the definite pathogenesis of hair loss is still an enigma. On the other hand, targeted drug carriers ensure the drug therapeutic effect and low side effects. This review highlights the organization and overview of nine crucial signaling pathways associated with hair loss, as well as the development of nanobased topical delivery systems loading the clinical drugs, which will fuel emerging hair loss treatment strategies.


Assuntos
Alopecia , Nanopartículas , Humanos , Administração Tópica , Alopecia/tratamento farmacológico , Preparações Farmacêuticas , Transdução de Sinais , Nanopartículas/uso terapêutico
4.
J Nanobiotechnology ; 21(1): 335, 2023 Sep 19.
Artigo em Inglês | MEDLINE | ID: mdl-37726778

RESUMO

Calcium (Ca2+) is essential for mitochondrial homeostasis and function coordination, particularly in cancer cells that metabolize frequently to sustain their growth. Photochemistry mediated calcium overload has attracted lots of attention as an effective way to achieve tumor suppression. Herein, we developed a photonanomedicine to synergistically induce calcium overload via cell-surface photochemistry and thus tumor suppression. Specifically, the photosensitizer, protoporphyrin IX (PpIX) was loaded onto upconversion nanoparticles (UCNP), which was subsequently modified by a polymer bearing photo-crosslinking cinnamate (CA) groups. The resulting nanoparticle was further functionalized by anti-CD20 aptamers (Apt), to give photonanomedicine. The interaction between CD20 receptors and anti-CD20 aptamers allowed photonanomedicine to accurately attach onto the Raji cell surface after an intravenous injection. Following the local application of a 980 nm NIR laser, the photonanomedicine was able to capture the NIR light and convert it into ultraviolet (UV) light. On one hand, the converted UV light led the crosslinking of cinnamate groups in photonanomedicine, further stimulating the clustering of CD20 receptors and causing Ca2+ influx. On the other hand, the UV light could simultaneously excited PpIX to generate reactive oxygen species (ROS) in situ to break down the integrity of cell membrane and lead to an influx of Ca2+. The synergistic Ca2+ overload mediated by photonanomedicine exhibited an enhanced and superior anti-tumor efficacy. We believe this photonanomedicine expands the toolbox to manipulate intracellular Ca2+ concentration and holds a great potential as an anti-tumor therapy.


Assuntos
Cálcio , Luz , Fotoquímica , Membrana Celular , Cinamatos , Oligonucleotídeos
5.
J Nanobiotechnology ; 21(1): 105, 2023 Mar 25.
Artigo em Inglês | MEDLINE | ID: mdl-36964609

RESUMO

Rheumatoid arthritis (RA) is a systemic immune disease characterized by synovial inflammation. Patients with RA commonly experience significant damage to their hand and foot joints, which can lead to joint deformities and even disability. Traditional treatments have several clinical drawbacks, including unclear pharmacological mechanisms and serious side effects. However, the emergence of antibody drugs offers a promising approach to overcome these limitations by specifically targeting interleukin-1 (IL-1), interleukin-6 (IL-6), tumor necrosis factor-alpha (TNF-α), and other cytokines that are closely related to the onset of RA. This approach reduces the incidence of adverse effects and contributes to significant therapeutic outcomes. Furthermore, combining these antibody drugs with drug delivery nanosystems (DDSs) can improve their tissue accumulation and bioavailability.Herein, we provide a summary of the pathogenesis of RA, the available antibody drugs and DDSs that improve the efficacy of these drugs. However, several challenges need to be addressed in their clinical applications, including patient compliance, stability, immunogenicity, immunosupression, target and synergistic effects. We propose strategies to overcome these limitations. In summary, we are optimistic about the prospects of treating RA with antibody drugs, given their specific targeting mechanisms and the potential benefits of combining them with DDSs.


Assuntos
Anticorpos Monoclonais , Artrite Reumatoide , Humanos , Anticorpos Monoclonais/uso terapêutico , Preparações Farmacêuticas , Artrite Reumatoide/tratamento farmacológico , Inflamação , Citocinas , Fator de Necrose Tumoral alfa
6.
Molecules ; 28(3)2023 Feb 03.
Artigo em Inglês | MEDLINE | ID: mdl-36771172

RESUMO

Pancreatic ductal adenocarcinoma (PDAC) is a highly malignant tumor with an extremely poor prognosis and low survival rate. Due to its inconspicuous symptoms, PDAC is difficult to diagnose early. Most patients are diagnosed in the middle and late stages, losing the opportunity for surgery. Chemotherapy is the main treatment in clinical practice and improves the survival of patients to some extent. However, the improved prognosis is associated with higher side effects, and the overall prognosis is far from satisfactory. In addition to resistance to chemotherapy, PDAC is significantly resistant to targeted therapy and immunotherapy. The failure of multiple treatment modalities indicates great dilemmas in treating PDAC, including high molecular heterogeneity, high drug resistance, an immunosuppressive microenvironment, and a dense matrix. Nanomedicine shows great potential to overcome the therapeutic barriers of PDAC. Through the careful design and rational modification of nanomaterials, multifunctional intelligent nanosystems can be obtained. These nanosystems can adapt to the environment's needs and compensate for conventional treatments' shortcomings. This review is focused on recent advances in the use of well-designed nanosystems in different therapeutic modalities to overcome the PDAC treatment dilemma, including a variety of novel therapeutic modalities. Finally, these nanosystems' bottlenecks in treating PDAC and the prospect of future clinical translation are briefly discussed.


Assuntos
Carcinoma Ductal Pancreático , Neoplasias Pancreáticas , Humanos , Carcinoma Ductal Pancreático/tratamento farmacológico , Neoplasias Pancreáticas/tratamento farmacológico , Imunoterapia/métodos , Protocolos de Quimioterapia Combinada Antineoplásica/uso terapêutico , Microambiente Tumoral , Neoplasias Pancreáticas
7.
J Nanobiotechnology ; 20(1): 261, 2022 Jun 07.
Artigo em Inglês | MEDLINE | ID: mdl-35672752

RESUMO

Adoptive cell therapy (ACT) was one of the most promising anti-tumor modalities that has been confirmed to be especially effective in treating hematological malignancies. However, the clinical efficacy of ACT on solid tumor was greatly hindered by the insufficient tumor-infiltration of cytotoxic CD8 + T cells. Herein, we constructed a nanoplatform termed dual-binding magnetic nanoparticles (DBMN) that comprised PEG-maleimide (Mal), hyaluronic acid (HA) and Fe3O4 for adoptive T cell-modification and ACT-sensitization. After a simple co-incubation, DBMN was anchored onto the cell membrane (Primary linking) via Michael addition reaction between the Mal and the sulfhydryl groups on the surface of T cells, generating magnetized T cells (DBMN-T). Directed by external magnetic field and in-structure Fe3O4, DBMN-T was recruited to solid tumor where HA bond with the highly expressed CD44 on tumor cells (Secondary Linking), facilitating the recognition and effector-killing of tumor cells. Bridging adoptive T cells with host tumor cells, our DBMN effectively boosted the anti-solid tumor efficacy of ACT in a mouse model and simultaneously reduced toxic side effects.


Assuntos
Nanopartículas , Neoplasias , Animais , Linhagem Celular Tumoral , Ácido Hialurônico/química , Campos Magnéticos , Camundongos , Nanopartículas/química , Neoplasias/patologia , Neoplasias/terapia , Linfócitos T Citotóxicos
8.
J Nanobiotechnology ; 20(1): 179, 2022 Apr 02.
Artigo em Inglês | MEDLINE | ID: mdl-35366904

RESUMO

Transcatheter arterial chemoembolization (TACE) is one of the main palliative therapies for advanced hepatocellular carcinoma (HCC), which is also regarded as a promising therapeutic strategy for cancer treatment. However, drug-loaded microspheres (DLMs), as commonly used clinical chemoembolization drugs, still have the problems of uneven particle size and unstable therapeutic efficacy. Herein, gelatin was used as the wall material of the microspheres, and homogenous gelatin microspheres co-loaded with adriamycin and Fe3O4 nanoparticles (ADM/Fe3O4-MS) were further prepared by a high-voltage electrospray technology. The introduction of Fe3O4 nanoparticles into DLMs not only provided excellent T2-weighted magnetic resonance imaging (MRI) properties, but also improved the anti-tumor effectiveness under microwave-induced hyperthermia. The results showed that ADM/Fe3O4-MS plus microwave irradiation had significantly better antitumor efficacy than the other types of microspheres at both cell and animal levels. Our study further confirmed that ferroptosis was involved in the anti-tumor process of ADM/Fe3O4-MS plus microwave irradiation, and ferroptosis marker GPX4 was significantly decreased and ACSL4 was significantly increased, and ferroptosis inhibitors could reverse the tumor cell killing effect caused by ADM/Fe3O4-MS to a certain extent. Our results confirmed that microwave mediated hyperthermia could amplify the antitumor efficacy of ADM/Fe3O4-MS by activating ferroptosis and the introduction of Fe3O4 nanoparticles can significantly improve TACE for HCC. This study confirmed that it was feasible to use uniform-sized gelatin microspheres co-loaded with Fe3O4 nanoparticles and adriamycin to enhance the efficacy of TACE for HCC.


Assuntos
Carcinoma Hepatocelular , Quimioembolização Terapêutica , Ferroptose , Neoplasias Hepáticas , Animais , Carcinoma Hepatocelular/tratamento farmacológico , Carcinoma Hepatocelular/patologia , Quimioembolização Terapêutica/métodos , Neoplasias Hepáticas/tratamento farmacológico , Microesferas
9.
J Nanobiotechnology ; 20(1): 524, 2022 Dec 10.
Artigo em Inglês | MEDLINE | ID: mdl-36496411

RESUMO

BACKGROUND: Excessive extracellular matrix (ECM) deposition in pancreatic ductal adenocarcinoma (PDAC) severely limits therapeutic drug penetration into tumors and is associated with poor prognosis. Collagen is the most abundant matrix protein in the tumor ECM, which is the main obstacle that severely hinders the diffusion of chemotherapeutic drugs or nanomedicines. METHODS: We designed a collagenase-functionalized biomimetic drug-loaded Au nanoplatform that combined ECM degradation, active targeting, immune evasion, near-infrared (NIR) light-triggered drug release, and synergistic antitumor therapy and diagnosis into one nanoplatform. PDAC tumor cell membranes were extracted and coated onto doxorubicin (Dox)-loaded Au nanocages, and then collagenase was added to functionalize the cell membrane through lipid insertion. We evaluated the physicochemical properties, in vitro and in vivo targeting, penetration and therapeutic efficacy of the nanoplatform. RESULTS: Upon intravenous injection, this nanoplatform efficiently targeted the tumor through the homologous targeting properties of the coated cell membrane. During penetration into the tumor tissue, the dense ECM in the PDAC tissues was gradually degraded by collagenase, leading to a looser ECM structure and deep penetration within the tumor parenchyma. Under NIR irradiation, both photothermal and photodynamic effects were produced and the encapsulated chemotherapeutic drugs were released effectively, exerting a strong synergistic antitumor effect. Moreover, this nanoplatform has X-ray attenuation properties that could serve to guide and monitor treatment by CT imaging. CONCLUSION: This work presented a unique and facile yet effective strategy to modulate ECM components in PDAC, enhance tumor penetration and tumor-killing effects and provide therapeutic guidance and monitoring.


Assuntos
Nanopartículas , Neoplasias Pancreáticas , Fotoquimioterapia , Humanos , Nanopartículas/química , Doxorrubicina/farmacologia , Liberação Controlada de Fármacos , Neoplasias Pancreáticas/tratamento farmacológico , Matriz Extracelular , Linhagem Celular Tumoral , Fototerapia/métodos
10.
J Nanobiotechnology ; 20(1): 351, 2022 Jul 30.
Artigo em Inglês | MEDLINE | ID: mdl-35907841

RESUMO

BACKGROUND: The efficacy of immune checkpoint blockade (ICB), in the treatment of hepatocellular carcinoma (HCC), is limited due to low levels of tumor-infiltrating T lymphocytes and deficient checkpoint blockade in this immunologically "cool" tumor. Thus, combination approaches are needed to increase the response rates of ICB and induce synergistic antitumor immunity. METHODS: Herein, we designed a pH-sensitive multifunctional nanoplatform based on layered double hydroxides (LDHs) loaded with siRNA to block the intracellular immune checkpoint NR2F6, together with the asynchronous blockade surface receptor PD-L1 to induce strong synergistic antitumor immunity. Moreover, photothermal therapy (PTT) generated by LDHs after laser irradiation modified an immunologically "cold" microenvironment to potentiate Nr2f6-siRNA and anti-PD-L1 immunotherapy. Flow cytometry was performed to assess the immune responses initiated by the multifunctional nanoplatform. RESULTS: Under the slightly acidic tumor extracellular environment, PEG detached and the re-exposed positively charged LDHs enhanced tumor accumulation and cell uptake. The accumulated siRNA suppressed the signal of dual protumor activity in both immune and H22 tumor cells by silencing the NR2F6 gene, which further reduced the tumor burden and enhanced systemic antitumor immunity. The responses include enhanced tumor infiltration by CD4+ helper T cells, CD8+ cytotoxic T cells, and mature dendritic cells; the significantly decreased level of immune suppressed regulator T cells. The therapeutic responses were also attributed to the production of IL-2, IFN-γ, and TNF-α. The prepared nanoparticles also exhibited potential magnetic resonance imaging (MRI) ability, which could serve to guide synergistic immunotherapy treatment. CONCLUSIONS: In summary, the three combinations of PTT, NR2F6 gene ablation and anti-PD-L1 can promote a synergistic immune response to inhibit the progression of primary HCC tumors and prevent metastasis. This study can be considered a proof-of-concept for the targeting of surface and intracellular immune checkpoints to supplement the existing HCC immunotherapy treatments.


Assuntos
Antígeno B7-H1/metabolismo , Carcinoma Hepatocelular , Neoplasias Hepáticas , Antígeno B7-H1/antagonistas & inibidores , Carcinoma Hepatocelular/tratamento farmacológico , Linhagem Celular Tumoral , Humanos , Hidróxidos/uso terapêutico , Imunoterapia/métodos , Neoplasias Hepáticas/tratamento farmacológico , Terapia Fototérmica , RNA Interferente Pequeno/uso terapêutico , Proteínas Repressoras/uso terapêutico , Microambiente Tumoral
11.
Molecules ; 27(9)2022 Apr 22.
Artigo em Inglês | MEDLINE | ID: mdl-35566065

RESUMO

Ferritin is an iron storage protein that plays a key role in iron homeostasis and cellular antioxidant activity. Ferritin has many advantages as a tumor immunotherapy platform, including a small particle size that allows for penetration into tumor-draining lymph nodes or tumor tissue, a unique structure consisting of 24 self-assembled subunits, cavities that can encapsulate drugs, natural targeting functions, and a modifiable outer surface. In this review, we summarize related research applying ferritin as a tumor immune vaccine or a nanocarrier for immunomodulator drugs based on different targeting mechanisms (including dendritic cells, tumor-associated macrophages, tumor-associated fibroblasts, and tumor cells). In addition, a ferritin-based tumor vaccine expected to protect against a wide range of coronaviruses by targeting multiple variants of SARS-CoV-2 has entered phase I clinical trials, and its efficacy is described in this review. Although ferritin is already on the road to transformation, there are still many difficulties to overcome. Therefore, three barriers (drug loading, modification sites, and animal models) are also discussed in this paper. Notwithstanding, the ferritin-based nanoplatform has great potential for tumor immunotherapy, with greater possibility of clinical transformation.


Assuntos
COVID-19 , Vacinas Anticâncer , Animais , COVID-19/terapia , Ferritinas/química , Imunoterapia , Ferro/metabolismo , SARS-CoV-2
12.
Mol Pharm ; 18(9): 3206-3222, 2021 09 06.
Artigo em Inglês | MEDLINE | ID: mdl-34337953

RESUMO

Kidney diseases, including acute kidney injury (AKI) and chronic kidney disease (CKD), have become a global public health concern associated with high morbidity, mortality, and healthcare costs. However, at present, very few effective and specific drug therapies are available, owing to the poor therapeutic efficacy and systemic side effects. Kidney-targeted drug delivery, as a potential strategy for solving these problems, has received great attention in the fields of AKI and CKD in recent years. Here, we review the literature on renal targeted, more specifically, renal cell-targeted formulations of AKI and CKD that offered biodistribution data. First, we provide a broad overview of the unique structural characteristics and injured cells of acute and chronic injured kidneys. We then separately summarize literature examples of renal targeted formulations according to the difference of target cells and elaborate on the appropriate formulation design criteria for AKI and CKD. Finally, we propose a hypothetic strategy to improve the renal accumulation of glomerular cell-targeted formulation by escaping the uptake of the reticuloendothelial system and provide some perspectives for future studies.


Assuntos
Injúria Renal Aguda/tratamento farmacológico , Sistemas de Liberação de Medicamentos/métodos , Glomérulos Renais/metabolismo , Insuficiência Renal Crônica/tratamento farmacológico , Injúria Renal Aguda/patologia , Animais , Modelos Animais de Doenças , Humanos , Glomérulos Renais/efeitos dos fármacos , Glomérulos Renais/patologia , Camundongos , Insuficiência Renal Crônica/patologia , Distribuição Tecidual
13.
J Nanobiotechnology ; 19(1): 132, 2021 May 10.
Artigo em Inglês | MEDLINE | ID: mdl-33971910

RESUMO

Molecular imaging technology enables us to observe the physiological or pathological processes in living tissue at the molecular level to accurately diagnose diseases at an early stage. Optical imaging can be employed to achieve the dynamic monitoring of tissue and pathological processes and has promising applications in biomedicine. The traditional first near-infrared (NIR-I) window (NIR-I, range from 700 to 900 nm) imaging technique has been available for more than two decades and has been extensively utilized in clinical diagnosis, treatment and scientific research. Compared with NIR-I, the second NIR window optical imaging (NIR-II, range from 1000 to 1700 nm) technology has low autofluorescence, a high signal-to-noise ratio, a high tissue penetration depth and a large Stokes shift. Recently, this technology has attracted significant attention and has also become a heavily researched topic in biomedicine. In this study, the optical characteristics of different fluorescence nanoprobes and the latest reports regarding the application of NIR-II nanoprobes in different biological tissues will be described. Furthermore, the existing problems and future application perspectives of NIR-II optical imaging probes will also be discussed.


Assuntos
Raios Infravermelhos , Imagem Molecular/métodos , Imagem Óptica/métodos , Animais , Tecnologia Biomédica , Liberação Controlada de Fármacos , Fluorescência , Humanos , Neoplasias/diagnóstico por imagem , Razão Sinal-Ruído , Células-Tronco , Cirurgia Assistida por Computador/métodos
14.
J Nanobiotechnology ; 19(1): 297, 2021 Sep 30.
Artigo em Inglês | MEDLINE | ID: mdl-34593005

RESUMO

BACKGROUND: Photothermal therapy (PTT) is a highly effective treatment for solid tumors and can induce long-term immune memory worked like an in situ vaccine. Nevertheless, PTT inevitably encounters photothermal resistance of tumor cells, which hinders therapeutic effect or even leads to tumor recurrence. Naïve CD8+ T cells are mainly metabolized by oxidative phosphorylation (OXPHOS), followed by aerobic glycolysis after activation. And the differentiate of effector CD8+ T cell (CD8+ Teff) into central memory CD8+ T cell (CD8+ TCM) depends on fatty acid oxidation (FAO) to meet their metabolic requirements, which is regulated by adenosine monophosphate activated protein kinase (AMPK). In addition, the tumor microenvironment (TME) is severely immunosuppressive, conferring additional protection against the host immune response mediated by PTT. METHODS: Metformin (Met) down-regulates NADH/NADPH, promotes the FAO of CD8+ T cells by activating AMPK, increases the number of CD8+ TCM, which boosts the long-term immune memory of tumor-bearing mice treated with PTT. Here, a kind of PLGA microspheres co-encapsulated hollow gold nanoshells and Met (HAuNS-Met@MS) was constructed to inhibit the tumor progress. 2-Deoxyglucose (2DG), a glycolysis inhibitor for cancer starving therapy, can cause energy loss of tumor cells, reduce the heat stress response of tumor cell, and reverse its photothermal resistance. Moreover, 2DG prevents N-glycosylation of proteins that cause endoplasmic reticulum stress (ERS), further synergistically enhance PTT-induced tumor immunogenic cell death (ICD), and improve the effect of immunotherapy. So 2DG was also introduced and optimized here to solve the metabolic competition among tumor cells and immune cells in the TME. RESULTS: We utilized mild PTT effect of HAuNS to propose an in situ vaccine strategy based on the tumor itself. By targeting the metabolism of TME with different administration strategy of 2DG and perdurable action of Met, the thermotolerance of tumor cells was reversed, more CD8+ TCMs were produced and more effective anti-tumor was presented in this study. CONCLUSION: The Step-by-Step starving-photothermal therapy could not only reverse the tumor thermotolerance, but also enhance the ICD and produce more CD8+ TCM during the treatment.


Assuntos
Memória Imunológica , Neoplasias , Terapia Fototérmica , Termotolerância , Animais , Linfócitos T CD8-Positivos/imunologia , Linfócitos T CD8-Positivos/metabolismo , Linhagem Celular Tumoral , Ouro/química , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Nanoconchas/química , Neoplasias/imunologia , Neoplasias/metabolismo
15.
J Nanobiotechnology ; 19(1): 361, 2021 Nov 08.
Artigo em Inglês | MEDLINE | ID: mdl-34749740

RESUMO

BACKGROUND: Hepatocellular carcinoma is insensitive to many chemotherapeutic agents. Ferroptosis is a form of programmed cell death with a Fenton reaction mechanism. It converts endogenous hydrogen peroxide into highly toxic hydroxyl radicals, which inhibit hepatocellular carcinoma progression. METHODS: The morphology, elemental composition, and tumour microenvironment responses of various organic/inorganic nanoplatforms were characterised by different analytical methods. Their in vivo and in vitro tumour-targeting efficacy and imaging capability were analysed by magnetic resonance imaging. Confocal microscopy, flow cytometry, and western blotting were used to investigate the therapeutic efficacy and mechanisms of complementary ferroptosis/apoptosis mediated by the nanoplatforms. RESULTS: The nanoplatform consisted of a silica shell doped with iron and disulphide bonds and an etched core loaded with doxorubicin that generates hydrogen peroxide in situ and enhances ferroptosis. It relied upon transferrin for targeted drug delivery and could be activated by the tumour microenvironment. Glutathione-responsive biodegradability could operate synergistically with the therapeutic interaction between doxorubicin and iron and induce tumour cell death through complementary ferroptosis and apoptosis. The nanoplatform also has a superparamagnetic framework that could serve to guide and monitor treatment under T2-weighted magnetic resonance imaging. CONCLUSION: This rationally designed nanoplatform is expected to integrate cancer diagnosis, treatment, and monitoring and provide a novel clinical antitumour therapeutic strategy.


Assuntos
Ferro , Neoplasias Hepáticas/metabolismo , Nanopartículas , Estresse Oxidativo/efeitos dos fármacos , Microambiente Tumoral/efeitos dos fármacos , Carcinoma Hepatocelular/metabolismo , Ferroptose/efeitos dos fármacos , Células Hep G2 , Humanos , Ferro/química , Ferro/farmacologia
16.
J Nanobiotechnology ; 19(1): 427, 2021 Dec 18.
Artigo em Inglês | MEDLINE | ID: mdl-34922537

RESUMO

BACKGROUND: Gene therapy shows great promise for a broad array of diseases. However, we found that hypoxic tumor microenvironment (TME) exerted significant inhibitory effects on transfection efficiency of a variety of gene vectors (such as Lipo 2000 and PEI) in an oxygen-dependent manner. Solid tumors inevitably resulted in acute hypoxic areas due to the rapid proliferation of tumor cells and the aberrant structure of blood vessels. Thus, the hypoxic TME severely limited the efficiency and application of gene therapy. METHODS: In our previous study, we constructed endoplasmic reticulum-targeted cationic liposomes, PAR-Lipo, which could effectively deliver genes and ensure high transfection efficiency under normoxia. Unsatisfactorily, the transfection efficiency of PAR-Lipo was rather poor under hypoxia. We believed that reoxygenation was the most direct and effective means to rescue the low transfection under hypoxia. Hence, we fabricated liposomes modified with perfluorooctyl bromide (PFOB@Lipo) to load oxygen and deliver it to tumor sites, which effectively alleviated the hypoxic nature of tumor. Then PAR-Lipo were applied to mediate high-efficiency delivery of tumor suppressor gene pTP53 to inhibit tumor progression. RESULTS: The results showed that such staged strategy augmented the expression of P53 protein in tumors and extremely suppressed tumor growth. CONCLUSION: This work was the first attempt to utilize an oxygen nanocarrier to assist the therapeutic effect of gene therapy under hypoxia, providing a new reference for gene therapy in malignant tumors. GRAPHICAL ABSTARCT.


Assuntos
Terapia Genética/métodos , Lipossomos/química , Nanoestruturas/química , Oxigênio/química , Animais , Neoplasias da Mama/terapia , Linhagem Celular Tumoral , Feminino , Fluorocarbonos/química , Proteínas de Fluorescência Verde/genética , Humanos , Hidrocarbonetos Bromados/química , Lipossomos/farmacologia , Camundongos , Camundongos Nus , Plasmídeos/genética , Plasmídeos/metabolismo , Transfecção , Hipóxia Tumoral/efeitos dos fármacos , Microambiente Tumoral , Proteína Supressora de Tumor p53/genética
17.
J Nanobiotechnology ; 19(1): 76, 2021 Mar 17.
Artigo em Inglês | MEDLINE | ID: mdl-33731140

RESUMO

BACKGROUND: Hepatocellular carcinoma (HCC) is a common malignant tumor with poor prognosis. Magnetic resonance imaging (MRI) is one of the most effective imaging methods for the early diagnosis of HCC. However, the current MR contrast agents are still facing challenges in the early diagnosis of HCC due to their relatively low sensitivity and biosafety. Thus, the development of effective MR agents is highly needed for the early diagnosis of HCC. RESULTS: Herein, we fabricated an HCC-targeted nanocomplexes containing SPIO-loaded mesoporous polydopamine (MPDA@SPIO), sialic acid (SA)-modified polyethyleneimine (SA-PEI), and alpha-fetoprotein regulated ferritin gene (AFP-Fth) which was developed for the early diagnosis of HCC. It was found that the prepared nanocomplexes (MPDA@SPIO/SA-PEI/AFP-Fth) has an excellent biocompatibility towards the liver cells. In vivo and in vivo studies revealed that the transfection of AFP-Fth gene in hepatic cells significantly upregulated the expression level of ferritin, thereby resulting in an enhanced contrast on T2-weighted images via the formed endogenous MR contrast. CONCLUSIONS: The results suggested that MPDA@SPIO/SA-PEI/AFP-Fth had a superior ability to enhance the MR contrast of T2-weighted images of tumor region than the other preparations, which was due to its HCC-targeted ability and the combined T2 contrast effect of endogenous ferritin and exogenous SPIO. Our study proved that MPDA@SPIO/SA-PEI/AFP-Fth nanocomplexes could be used as an effective MR contrast agent to detect HCC in the early stage.


Assuntos
Carcinoma Hepatocelular/diagnóstico por imagem , Compostos Férricos/química , Ferritinas/genética , Indóis/química , Neoplasias Hepáticas/diagnóstico por imagem , Imageamento por Ressonância Magnética/métodos , Ácido N-Acetilneuramínico/química , Polímeros/química , Animais , Carcinoma Hepatocelular/patologia , Modelos Animais de Doenças , Células Hep G2 , Humanos , Ferro , Fígado/diagnóstico por imagem , Fígado/patologia , Neoplasias Hepáticas/patologia , Nanopartículas de Magnetita/química , Camundongos , Camundongos Endogâmicos BALB C , Transfecção , alfa-Fetoproteínas/metabolismo
18.
Nanomedicine ; 32: 102342, 2021 02.
Artigo em Inglês | MEDLINE | ID: mdl-33253922

RESUMO

Acute kidney injury (AKI) is a life-threatening disease without effective treatment. The utilization of curcumin (Cur) for the treatment of AKI is still facing challenges due to its poor water-solubility and low bioavailability. Herein, kidney-targeted octenyl succinic anhydride-grafted fucoidan loaded with Cur (OSA-Fucoidan/Cur) was fabricated for synergistic treatment of AKI. It was found that OSA-Fucoidan/Cur micelles had a sustained drug release behavior and excellent physicochemical stability. Cellular uptake studies demonstrated that the specific binding between fucoidan and P-selectin overexpressed on H2O2-stimulated HUVECs contributed to the higher internalization of OSA-Fucoidan/Cur micelles by the cells. In addition, OSA-Fucoidan micelles exhibited an ideal kidney-targeted characteristic in lipopolysaccharide (LPS)-induced AKI mice. In vivo studies showed that the combination of Cur and OSA-Fucoidan endowed the OSA-Fucoidan/Cur micelles with synergistically anti-inflammatory and antioxidant abilities, thereby largely enhancing the therapeutic efficacy of AKI. Therefore, OSA-Fucoidan/Cur micelles may represent a potential kidney-targeted nanomedicine for effective treatment of AKI.


Assuntos
Injúria Renal Aguda/tratamento farmacológico , Portadores de Fármacos/química , Micelas , Selectina-P/antagonistas & inibidores , Polissacarídeos/química , Injúria Renal Aguda/patologia , Animais , Antioxidantes/farmacologia , Curcumina/farmacologia , Curcumina/uso terapêutico , Liberação Controlada de Fármacos , Endocitose/efeitos dos fármacos , Meia-Vida , Células Endoteliais da Veia Umbilical Humana/metabolismo , Humanos , Masculino , Camundongos Endogâmicos ICR , Anidridos Succínicos/química , Distribuição Tecidual/efeitos dos fármacos
19.
J Nanobiotechnology ; 18(1): 80, 2020 May 24.
Artigo em Inglês | MEDLINE | ID: mdl-32448273

RESUMO

BACKGROUND: Psoriasis is a chronic immune-mediated inflammatory skin disease without effective treatment. The utilization of all trans-retinoic acid (TRA) and betamethasone (BT) for the treatment of psoriasis is still facing difficulties, due to their relatively poor stability, limited skin permeation, and systemic side effects. Flexible liposomes are excellent in deeper skin permeation and reducing the side effects of drugs, which is promising for effective treatment of skin disorders. This work aimed to establish dual-loaded flexible liposomal gel for enhanced therapeutic efficiency of psoriasis based on TRA and BT. RESULTS: Flexible liposomes co-loaded with TRA and BT were successfully prepared in our study. The characterization examination revealed that flexible liposomes featured nano-sized particles (around 70 nm), high drug encapsulation efficiency (> 98%) and sustained drug release behaviors. Flexible liposomes remarkably increased the drug skin permeation and retention as compared with free drugs. Results on HaCaT cells suggested that flexible liposomes were nontoxic, and its cellular uptake has a time-dependent manner. In vivo studies suggested the topical application of TRA and BT dual-loaded liposomal gel had the best ability to reduce the thickness of epidermal and the level of cytokines (TNF-α and IL-6), largely alleviating the symptoms of psoriasis. CONCLUSIONS: Flexible liposomal gel dual-loaded with TRA and BT exerted a synergistic effect, which is a promising topical therapeutic for the treatment of psoriasis.


Assuntos
Betametasona , Fármacos Dermatológicos , Lipossomos , Psoríase , Tretinoína , Animais , Betametasona/química , Betametasona/farmacocinética , Betametasona/farmacologia , Sobrevivência Celular/efeitos dos fármacos , Citocinas/metabolismo , Fármacos Dermatológicos/química , Fármacos Dermatológicos/farmacocinética , Fármacos Dermatológicos/farmacologia , Fármacos Dermatológicos/toxicidade , Modelos Animais de Doenças , Géis , Células HaCaT , Humanos , Lipossomos/química , Lipossomos/farmacocinética , Lipossomos/farmacologia , Lipossomos/toxicidade , Camundongos Endogâmicos BALB C , Tamanho da Partícula , Maleabilidade , Psoríase/tratamento farmacológico , Psoríase/metabolismo , Ratos , Ratos Sprague-Dawley , Tretinoína/química , Tretinoína/farmacocinética , Tretinoína/farmacologia
20.
J Liposome Res ; 30(1): 12-20, 2020 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-30741058

RESUMO

Multidrug resistance (MDR) is the largest obstacle to the success of chemotherapy. The development of innovative strategies and safe sensitizers is required to overcome MDR. Paclitaxel (PTX) is a widely used chemotherapeutic drug, the application of which has been learn to understand MDR. However, the application and use are severely restricted because of this MDR. Cyclodextrins (CDs) of many carriers, additionally have shown anti-cancer capability in MDR cancer cells. In this study, novel paclitaxel/hydroxypropyl-ß-cyclodextrin complex-loaded liposomes (PTXCDL) have been developed in an attempt to overcome MDR in a PTX-resistant human lung adenocarcinoma (A549/T) cell line. The in vitro application of PTXCDL exhibited pH-sensitive PTX release, potent cytotoxicity, and enhanced intracellular accumulation. In comparison to in vivo, PTXCDL also show a stronger inhibition of tumor growth. In comparison, these findings suggest that the PTXCDL provide a novel strategy for effective therapy of resistant cancers by overcoming the drug resistance.


Assuntos
2-Hidroxipropil-beta-Ciclodextrina/química , Antineoplásicos/química , Ciclodextrinas/química , Lipossomos/química , Nanopartículas/química , Paclitaxel/química , 2-Hidroxipropil-beta-Ciclodextrina/farmacologia , Antineoplásicos/farmacologia , Apoptose/efeitos dos fármacos , Linhagem Celular Tumoral , Permeabilidade da Membrana Celular , Sobrevivência Celular/efeitos dos fármacos , Composição de Medicamentos , Liberação Controlada de Fármacos , Resistência a Múltiplos Medicamentos , Resistencia a Medicamentos Antineoplásicos , Humanos , Concentração de Íons de Hidrogênio , Paclitaxel/farmacologia , Resultado do Tratamento
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa