Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 10 de 10
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Molecules ; 27(3)2022 Feb 07.
Artigo em Inglês | MEDLINE | ID: mdl-35164373

RESUMO

Acanthopanax senticosus (AS) is a medicinal and food homologous plant with many biological activities. In this research, we generated a brain injury model by 60Co -γ ray radiation at 4 Gy, and gavaged adult mice with the extract with AS, Acanthopanax senticocus polysaccharides (ASPS), flavones, syringin and eleutheroside E (EE) to explore the therapeutic effect and metabolic characteristics of AS on the brain injury. Behavioral tests and pathological experiments showed that the AS prevented the irradiated mice from learning and memory ability impairment and protected the neurons of irradiated mice. Meanwhile, the functional components of AS increased the antioxidant activity of irradiated mice. Furthermore, we found the changes of neurotransmitters, especially in the EE and syringin groups. Finally, distribution and pharmacokinetic analysis of AS showed that the functional components, especially EE, could exert their therapeutic effects in brain of irradiated mice. This lays a theoretical foundation for the further research on the treatment of radiation-induced brain injury by AS.


Assuntos
Antioxidantes/farmacologia , Lesões Encefálicas/tratamento farmacológico , Eleutherococcus/química , Fármacos Neuroprotetores/farmacologia , Neurotransmissores/metabolismo , Extratos Vegetais/farmacologia , Lesões por Radiação/tratamento farmacológico , Animais , Antioxidantes/farmacocinética , Encéfalo/efeitos dos fármacos , Lesões Encefálicas/etiologia , Lesões Encefálicas/patologia , Radioisótopos de Cobalto/toxicidade , Masculino , Camundongos , Fármacos Neuroprotetores/farmacocinética , Extratos Vegetais/farmacocinética , Lesões por Radiação/etiologia , Lesões por Radiação/patologia , Distribuição Tecidual
2.
Mol Psychiatry ; 25(11): 2672-2684, 2020 11.
Artigo em Inglês | MEDLINE | ID: mdl-32826963

RESUMO

Genome-wide association studies (GWASs) have identified numerous single nucleotide polymorphisms (SNPs) associated with bipolar disorder (BD), but what the causal variants are and how they contribute to BD is largely unknown. In this study, we used FUMA, a GWAS annotation tool, to pinpoint potential causal variants and genes from the latest BD GWAS findings, and performed integrative analyses, including brain expression quantitative trait loci (eQTL), gene coexpression network, differential gene expression, protein-protein interaction, and brain intermediate phenotype association analysis to identify the functions of a prioritized gene and its connection to BD. Convergent lines of evidence prioritized protein-coding gene G Protein Nucleolar 3 (GNL3) as a BD risk gene, with integrative analyses revealing GNL3's roles in cell proliferation, neuronal functions, and brain phenotypes. We experimentally revealed that BD-related eQTL SNPs rs10865973, rs12635140, and rs4687644 regulate GNL3 expression using dual luciferase reporter assay and CRISPR interference experiment in human neural progenitor cells. We further identified that GNL3 knockdown and overexpression led to aberrant neuronal proliferation and differentiation, using two-dimensional human neural cell cultures and three-dimensional forebrain organoid model. This study gathers evidence that BD-related genetic variants regulate GNL3 expression which subsequently affects neuronal proliferation and differentiation.


Assuntos
Transtorno Bipolar/genética , Proteínas de Ligação ao GTP/genética , Predisposição Genética para Doença/genética , Proteínas Nucleares/genética , Estudo de Associação Genômica Ampla , Humanos , Polimorfismo de Nucleotídeo Único/genética , Locos de Características Quantitativas/genética
3.
Bioinformatics ; 35(1): 172-174, 2019 01 01.
Artigo em Inglês | MEDLINE | ID: mdl-29985970

RESUMO

Summary: Gene expression changes over the lifespan and varies among different tissues or cell types. Gene co-expression also changes by sex, age, different tissues or cell types. However, gene expression under the normal state and gene co-expression in the human brain has not been fully defined and quantified. Here we present a database named Brain EXPression Database (BrainEXP) which provides spatiotemporal expression of individual genes and co-expression in normal human brains. BrainEXP consists of 4567 samples from 2863 healthy individuals gathered from existing public databases and our own data, in either microarray or RNA-Seq library types. We mainly provide two analysis results based on the large dataset: (i) basic gene expression across specific brain regions, age ranges and sexes; (ii) co-expression analysis from different platforms. Availability and implementation: http://www.brainexp.org/. Supplementary information: Supplementary data are available at Bioinformatics online.


Assuntos
Encéfalo/crescimento & desenvolvimento , Bases de Dados Genéticas , Perfilação da Expressão Gênica , Biologia Computacional , Humanos , RNA , Análise de Sequência de RNA
4.
medRxiv ; 2024 Feb 16.
Artigo em Inglês | MEDLINE | ID: mdl-38405973

RESUMO

Research on brain expression quantitative trait loci (eQTLs) has illuminated the genetic underpinnings of schizophrenia (SCZ). Yet, the majority of these studies have been centered on European populations, leading to a constrained understanding of population diversities and disease risks. To address this gap, we examined genotype and RNA-seq data from African Americans (AA, n=158), Europeans (EUR, n=408), and East Asians (EAS, n=217). When comparing eQTLs between EUR and non-EUR populations, we observed concordant patterns of genetic regulatory effect, particularly in terms of the effect sizes of the eQTLs. However, 343,737 cis-eQTLs (representing ∼17% of all eQTLs pairs) linked to 1,276 genes (about 10% of all eGenes) and 198,769 SNPs (approximately 16% of all eSNPs) were identified only in the non-EUR populations. Over 90% of observed population differences in eQTLs could be traced back to differences in allele frequency. Furthermore, 35% of these eQTLs were notably rare (MAF < 0.05) in the EUR population. Integrating brain eQTLs with SCZ signals from diverse populations, we observed a higher disease heritability enrichment of brain eQTLs in matched populations compared to mismatched ones. Prioritization analysis identified seven new risk genes ( SFXN2 , RP11-282018.3 , CYP17A1 , VPS37B , DENR , FTCDNL1 , and NT5DC2 ), and three potential novel regulatory variants in known risk genes ( CNNM2 , C12orf65 , and MPHOSPH9 ) that were missed in the EUR dataset. Our findings underscore that increasing genetic ancestral diversity is more efficient for power improvement than merely increasing the sample size within single-ancestry eQTLs datasets. Such a strategy will not only improve our understanding of the biological underpinnings of population structures but also pave the way for the identification of novel risk genes in SCZ.

5.
Comput Struct Biotechnol J ; 21: 3875-3884, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37602231

RESUMO

Alzheimer's disease (AD) is a complex and multifactorial neurodegenerative disorder, and it is unlikely that any single drug or intervention will be very successful. The pathophysiology of Alzheimer's disease involves a range of complicated biological processes, including the accumulation of beta-amyloid protein and tau protein. Given the complexity of AD and amyloid accumulation, a combination of interventions remains to be further explored. Here, we investigated the potential of combining ß-asarone and cannabidiol (CBD) as a treatment for AD. The study analyzed the combined effects of these two phytochemicals on beta-amyloid (Aß) protein aggregation and toxicity in bulk solution, in cells as well as in C.elegans. We detailed the morphological and size changes of Aß40 aggregates in the presence of ß-asarone and cannabidiol. More importantly, the presence of both compounds synergistically inhibited apoptosis and downregulated relative gene expression in cells, and that it may also slow aging, decrease the rate of paralysis, enhance learning capacity, and boost autophagy activity in C.elegans. Our studies suggest that multiple drugs, like ß-asarone and CBD, may be potentially developed as a medicinal adjunct in the treatment of AD, although further clinical trials are needed to determine the efficacy and safety of this combination treatment in humans.

6.
CNS Neurosci Ther ; 29 Suppl 1: 129-145, 2023 06.
Artigo em Inglês | MEDLINE | ID: mdl-36971202

RESUMO

BACKGROUND: Acanthopanax senticosus (AS) is a medicinal and food plant with many physiological functions, especially nerve protection. Its extract has many functional components, including polysaccharides, flavonoids, saponins, and amino acids. Our previous study indicated that AS extract protected against nerve damage caused by radiation. However, little is known about the gut-brain axis mechanism of AS and its impact on radiation-induced learning and memory impairment. METHOD: In 60 Co-γ ray-irradiated mice, we investigated the changes in behavior, neurotransmitters and gut microbiota after different days of administration of AS extract as a dietary supplement. RESULTS: The AS extract improved learning and memory ability in mice, and the neurotransmitter levels in the hippocampus and colon started to change from the 7th day, which accompanied changes of the gut microbiota, a decreased abundance of Helicobacter on the 7th day and an increased abundance of Lactobacillus on the 28th day. Among the marker bacteria, Ruminococcus and Clostridiales were associated with 5-HT synthesis, and Streptococcus were associated with 5-HT and ACH synthesis. In addition, the AS extract increased the tight junction protein, inhibited inflammation levels in colon, and even increased the relative protein expression of BDNF and NF-κB and decreased the relative protein expression of IκBα in the hippocampus of irradiated mice. CONCLUSION: These results will lay the foundation for further study on the mechanism of the gut-brain axis of AS in preventing radiation-induced learning and memory impairment.


Assuntos
Eleutherococcus , Microbioma Gastrointestinal , Camundongos , Animais , Extratos Vegetais/farmacologia , Extratos Vegetais/uso terapêutico , Eleutherococcus/química , Serotonina , Neurotransmissores , Comunicação
7.
Psychiatry Res ; 326: 115281, 2023 08.
Artigo em Inglês | MEDLINE | ID: mdl-37270865

RESUMO

Common genetic variants located in calcium channel genes are important markers of genetic susceptibility for bipolar disorder (BD). Previous clinical trials with Calcium Channel Blocker (CCB) medication improved mood stability for some BD patients. We hypothesize that manic patients who carried calcium channel risk variants would differentially benefit from treatment with CCBs. In this pilot study, 50 BD patients (Chinese: 39; US: 11) who were hospitalized for manic episodes were given add-on CCB treatment. We determined genotypes for each patient. There was a significant decrease in the Young Mania Rating Scale (YMRS) after add-on medication treatment. Of note, two intronic variants of the Calcium Voltage-Gated Channel Subunit Alpha1 B (CACNA1B) were associated with treatment outcomes for manic patients: rs2739258 and rs2739260. BD rs2739258/rs2739260 AG-allele carriers had a better treatment response with add-on CCB than those carrying the AA or GG genotypes by survival analysis. Although these findings did not pass multiple testing correction, this study suggests that single-nucleotide polymorphisms (SNPs) residing in calcium channel genes could be predictors for response to add-on CCB treatment of bipolar mania patients, and that calcium channel genes may be involved in treatment responses for BD.


Assuntos
Transtorno Bipolar , Humanos , Transtorno Bipolar/tratamento farmacológico , Transtorno Bipolar/genética , Transtorno Bipolar/complicações , Mania , Bloqueadores dos Canais de Cálcio/farmacologia , Bloqueadores dos Canais de Cálcio/uso terapêutico , Projetos Piloto , Testes Farmacogenômicos , Canais de Cálcio/genética , Canais de Cálcio/uso terapêutico
8.
Commun Biol ; 5(1): 680, 2022 07 08.
Artigo em Inglês | MEDLINE | ID: mdl-35804021

RESUMO

Radiation affects not only cognitive function but also gut microbiota. Eleutheroside E (EE), a principal active compound of Acanthopanax senticosus, has a certain protective effect on the nervous system. Here, we find a four-week EE supplementation to the 60Co-γ ray irradiated mice improves the cognition and spatial memory impairments along with the protection of hippocampal neurons, remodels the gut microbiota, especially changes of Lactobacillus and Helicobacter, and altered the microbial metabolites including neurotransmitters (GABA, NE, ACH, 5-HT) as well as their precursors. Furthermore, the fecal transplantation of EE donors verifies that EE alleviated cognition and spatial memory impairments, and activates the PKA/CREB/BDNF signaling via gut microbiota. Our findings provide insight into the mechanism of EE effect on the gut-brain axis and underpin a proposed therapeutic value of EE in cognitive and memory impairments induced by radiation.


Assuntos
Disfunção Cognitiva , Microbioma Gastrointestinal , Lignanas , Animais , Disfunção Cognitiva/etiologia , Disfunção Cognitiva/metabolismo , Disfunção Cognitiva/prevenção & controle , Suplementos Nutricionais , Glucosídeos , Lignanas/farmacologia , Camundongos
9.
Transl Psychiatry ; 12(1): 212, 2022 05 26.
Artigo em Inglês | MEDLINE | ID: mdl-35618730

RESUMO

Schizophrenia (SCZ) and bipolar disorder (BPD) are associated with abnormal expression of immune-related factors (IRFs), which have been proposed as biomarkers of either disease diagnosis (trait markers) or treatment (state markers). However, the state markers have been found to be less reproducible than the trait markers in previous studies. In the current study, we focused on the changes of IRFs in blood of SCZ and BPD patients receiving monotherapy. SCZ (N = 49) and BPD (N = 49) Chinese patients were recruited at acute episode and followed for 9 to 51 days until remission. Blood samples were collected at two state-points, acute state before treatment and remission state after treatment. A total of 41 IRFs in plasma were quantified by the Luminex assay. After adjusting covariates, we found four cytokines or cytokine receptors were significantly increased at remission when compared to acute episode in all the patients, including CD30, BAFF, CCL20, and CXCL10 (Bonferroni corrected p < 0.05). CD30 and BAFF were consistently increased in both SCZ and BPD while the increase of CCL20 was only observed in BPD but not SCZ when analyzing the two disorders separately. CXCL10 change was not significant in either SCZ or BPD alone. The changes of these four factors were correlated with each other, but not with clinical features. CD30 concentration in the BPD acute state was correlated with sleep quality (Spearman's rs = 0.365, Bonferroni corrected p < 0.05). Overall, we found that four factors (CD30, BAFF, CCL20, and CXCL10) might be associated with treatment of psychosis.


Assuntos
Transtorno Bipolar , Transtornos Psicóticos , Esquizofrenia , Povo Asiático , Biomarcadores , Transtorno Bipolar/diagnóstico , Transtorno Bipolar/tratamento farmacológico , Transtorno Bipolar/metabolismo , Humanos , Fenótipo , Esquizofrenia/diagnóstico , Esquizofrenia/tratamento farmacológico , Esquizofrenia/metabolismo
10.
ACS Appl Mater Interfaces ; 11(12): 11112-11118, 2019 Mar 27.
Artigo em Inglês | MEDLINE | ID: mdl-30874429

RESUMO

Delivery of proteins to carry out desired biological functions is a direct approach for disease treatment. However, protein therapy is still facing challenges due to low delivery efficiency, poor targeting during trafficking, insufficient therapeutic efficacy, and possible toxicity induced by carriers. Here, we present a novel delivery platform based on DNA origami nanostructure that enables tumor cell transportation of active proteins for cancer therapy. In our design, cytotoxic protein ribonuclease (RNase) A molecules are organized on the rectangular DNA origami nanosheets, which work as nanovehicles to deliver RNase A molecules into the cytoplasm and execute their cell-killing function inside the tumor cells. Cancer cell-targeting aptamers are also integrated onto the DNA origami-based nanoplatform to enhance its targeting effect. This DNA origami-protein coassembling strategy can be further developed to transport other functional proteins and therapeutic components simultaneously for synergistic effects and be adapted for integrated diagnostics and therapeutics.


Assuntos
DNA/química , Ribonuclease Pancreático/metabolismo , Aptâmeros de Nucleotídeos/química , Linhagem Celular Tumoral , Portadores de Fármacos/química , Humanos , Microscopia de Força Atômica , Mucina-1/química , Mucina-1/metabolismo , Nanoestruturas/química , Ribonuclease Pancreático/química
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa